Welcome![Sign In][Sign Up]
Location:
Search - denoise g

Search list

[Mathimatics-Numerical algorithmszhongzhilvbo_vc++

Description: 这个一个中值滤波源代码,内部有文档说明,和可执行文件,以及待测图片。-this a median filtering source code, internal documents show that and enforceable document, as well as describing the picture.
Platform: | Size: 157696 | Author: | Hits:

[matlabdecomp_reconst_WU

Description: Decompose image into subbands (undecimated wavelet), denoise, and recompose again. fh = decomp_reconst_wavelet(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig) im : image Nsc: Number of scales daub_order: Order of the daubechie fucntion used (must be even). block: size of neighborhood within each undecimated subband. noise: image having the same autocorrelation as the noise (e.g., a delta, for white noise) parent: are we including the coefficient at the central location at the next coarser scale? covariance: are we considering covariance or just variance? optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) Javier Portilla, Univ. de Granada, 3/03 Revised: 11/04 - Decompose image into subbands (undecimated wavelet), denoise, and recompose again. fh = decomp_reconst_wavelet(im,Nsc,daub_order,block,noise,parent,covariance,optim,sig) im : image Nsc: Number of scales daub_order: Order of the daubechie fucntion used (must be even). block: size of neighborhood within each undecimated subband. noise: image having the same autocorrelation as the noise (e.g., a delta, for white noise) parent: are we including the coefficient at the central location at the next coarser scale? covariance: are we considering covariance or just variance? optim: for choosing between BLS-GSM (optim = 1) and MAP-GSM (optim = 0) sig: standard deviation (scalar for uniform noise or matrix for spatially varying noise) Javier Portilla, Univ. de Granada, 3/03 Revised: 11/04
Platform: | Size: 1024 | Author: ali | Hits:

CodeBus www.codebus.net