Description: 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher. Platform: |
Size: 2048 |
Author:小弟 |
Hits:
Description: 利用Sub-pattern PCA在Yale人脸库上进行人脸识别的matlab源代码,子模式主成分分析首先对原始图像分块,然后对相同位置的子图像分别建立子图像集,在每一个子图像集内使用PCA方法提取特征,建立子空间。对待识别图像,经相同分块后,分别将子图像向对应的子空间投影,提取特征。最后根据最近邻原则进行分类。-Sub-pattern PCA use in the Yale face database for face recognition on the matlab source code, sub-mode principal component analysis first of the original image block, and then the same sub-image, respectively, the location of the establishment of sub-image set, in each sub-image Set the use of PCA to extract the features, the establishment of sub-space. Treatment to identify images, by the same block, the respective sub-image to the corresponding sub-space projection, feature extraction. Finally, according to the principle of nearest neighbor classification. Platform: |
Size: 2048 |
Author:章格 |
Hits:
Description: 基于非负矩阵分解(NMF)的人脸特征提取算法,NMF基本思想是找到一个线性子空间W,使的构成子空间的基本图像的像素点都是正值,而且人脸图像在子空间上的投影系数也是正数-Non-negative Matrix Factorization (NMF) of facial feature extraction algorithm, NMF basic idea is to find a linear sub-space W, so that the composition of sub-space of the basic image pixels are positive, and face image in the sub-space projection coefficient is positive Platform: |
Size: 1024 |
Author:李伟 |
Hits:
Description: 这是一个人脸识别的程序,先对图像预处理,然后用PCA进行特征提取。-This is a face recognition process, first on the image pre-processing, and then use PCA for feature extraction. Platform: |
Size: 2676736 |
Author:ll |
Hits:
Description: 为了更有效地提取图像的局部特征,提出了一种基于2维偏最小二乘法(two—dimensional partial least
square,2DPLS)的图像局部特征提取方法,并将其应用于面部表情识别中。该方法首先利用局部二元模式(1ocal
binary pattern,LBP)算子提取一幅图像中所有子块的纹理特征,并将其组合成局部纹理特征矩阵。由于样本图像
被转化为局部纹理特征矩阵,因此可将传统PLS方法推广为2DPLS方法,用来提取其中的判别信息。2DPLS方法
通过对类成员关系矩阵的构造进行相应的修改,使其适应样本的矩阵形式,并能体现出人脸局部信息重要性的差
异。同时,对于类成员关系协方差矩阵的奇异性问题,也推导出了其广义逆的解析解。基于JAFFE人脸表情库的
实验结果表明,该方法不但可以有效地提取图像局部特征,并能取得良好的表情识别效果。-To better the image of the local feature extraction, a partial least squares method based on 2D (two-dimensional partial least
square, 2DPLS) image local feature extraction method, and applied to facial expression recognition. In this method, use of local binary pattern (1ocal
binary pattern, LBP) operator extracts an image texture features of all sub-blocks, and their combination into the local texture feature matrix. As the sample image
Be translated into the local texture feature matrix, so the traditional PLS method can be generalized to 2DPLS method used to extract the identification information. 2DPLS method
Through the class membership matrix in the corresponding modifications to adapt the sample matrix, and can reflect the importance of face poor local information
Different. Meanwhile, members of the class covariance matrix of the singular relations issues, also derived the generalized inverse of the analytical solution. Based on the JAFFE facial expression database
Platform: |
Size: 315392 |
Author:MJ |
Hits:
Description: 人脸识别技术作为生物体特征识别技术的重要组成部分,在近些年来已经发展成为计算机视觉和模式识别领域的研究热点。本实验是基于K-L变换的主成分分析法(PCA)在人脸识别中的应用,在ORL人脸库的基础上通过Matlab实现了快速PCA算法的验证仿真,并对样本图像进行了重构。本实验在ORL人脸库的基础上,选用每人前5张图片,共计40人200幅样本图像,通过快速PCA算法将10304维的样本特征向量降至20维,并实现了基于主分量的人脸重建,验证了PCA算法在高维数据降维处理与特征提取方面的有效性。-Facial recognition technology as a biological feature recognition technology is an important part of, in recent years has become a hot research topic in the field of computer vision and pattern recognition.This experiment is based on K- L transform principal component analysis (PCA) in the application of face recognition, based on ORL face validation of rapid PCA algorithm was realized by Matlab simulation, and reconstructed the sample image., on the basis of the experiment on ORL face , choose top 5 pictures each, a total of 40 people 200 sample image, through rapid PCA algorithm the sample feature vector of 10304 d down to 20 d, and implements the face reconstruction based on principal component, PCA algorithm is verified in the high-dimensional data processing and feature extraction is effective to dimension reduction. Platform: |
Size: 20067328 |
Author:季科 |
Hits: