Welcome![Sign In][Sign Up]
Location:
Search - feature extraction using lda

Search list

[Mathimatics-Numerical algorithmsrtejfgds

Description: 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher.
Platform: | Size: 2513 | Author: 小弟 | Hits:

[Mathimatics-Numerical algorithmsrtejfgds

Description: 现有的代数特征的抽取方法绝大多数采用一维的方法,即首先将图像转换为一维向量,再用主分量分析(PCA),Fisher线性鉴别分析(LDA),Fisherfaces式核主分量分析(KPCA)等方法抽取特征,然后用适合的分类器分类。针对一维方法维数过高,计算量大,协方差矩阵常常是奇异矩阵等不足,提出了二维的图像特征抽取方法,计算量小,协方差矩阵一般是可逆的,且识别率较高。-existing algebra feature extraction method using a majority of the peacekeepers, First images will be converted into one-dimensional vector, and then principal component analysis (PCA), Fisher Linear Discriminant Analysis (LDA), Fisherfaces audits principal component analysis (KPCA), and other selected characteristics, then use the appropriate classification for classification. Victoria against an excessive dimension method, calculation, covariance matrix is often inadequate singular matrix, a two-dimensional image feature extraction method, a small amount of covariance matrix is usually reversible, and the recognition rate higher.
Platform: | Size: 2048 | Author: 小弟 | Hits:

[Graph Recognizeorl_pca

Description: 从前用matlab编的人脸识别的特征提取以及识别程序,希望有用-The previous series of face recognition using matlab feature extraction and identification procedures, seek to help
Platform: | Size: 1024 | Author: Bryan | Hits:

[AI-NN-PRfeatureExtraction

Description: 该程序包实现了模式识别中的两个特征提取算法,主成分分析PCA和线性判别分析LDA。采用C++语言编写,开发环境VS。 程序包还提供了两个测试样本文件。-The package to achieve the recognition of the two feature extraction algorithm, principal component analysis PCA and linear discriminant analysis LDA. Using C++ language, development environment VS. Package also provides two test samples.
Platform: | Size: 46080 | Author: tangxiaojun | Hits:

[matlabSVM

Description: In this paper, we show how support vector machine (SVM) can be employed as a powerful tool for $k$-nearest neighbor (kNN) classifier. A novel multi-class dimensionality reduction approach, Discriminant Analysis via Support Vectors (SVDA), is introduced by using the SVM. The kernel mapping idea is used to derive the non-linear version, Kernel Discriminant via Support Vectors (SVKD). In SVDA, only support vectors are involved to obtain the transformation matrix. Thus, the computational complexity can be greatly reduced for kernel based feature extraction. Experiments carried out on several standard databases show a clear improvement on LDA-based recognition
Platform: | Size: 2048 | Author: sofi | Hits:

[Special Effectslda

Description: lda线性特征提取,用于人脸识别,首先进行小波特征提取后用lda提取特征。-lda linear feature extraction for face recognition, first of all, after feature extraction using wavelet feature extraction using lda.
Platform: | Size: 2048 | Author: gu | Hits:

[Graph RecognizeAComparativeStudyonFaceRecognitionUsingLDA-BasedAl

Description: 线性判别分析(LDA)是一种较为普遍的用于特征提取的线性分类方法。但是将LDA直接用于人脸识别 会遇到维数问题和“小样本”问题。人们经过研究,通过多种途径解决了这两个问题并实现了基于I,DA的人脸识 别 文章对几种基于LDA的人脸识别方法做了理论上的比较和实验数据的支持,这些方法包括Eigenfaces、Fish— erfaceS、DLDA、VDLDA及VDFLDA。实验结果表明VDFLDA是其中最好的一种方法。-Low—dimensional feature representation with enhanced discriminatory power is of paramount importance to face recognition(FR)system.Linear Discriminant Analysis(LDA)is one of the most popular linear classification techniques of feature extraction。but it will meet two problems as computational challenging and “small sample size’’when applying to face recognition directly.After studying people solve the two problems through several ways and realize the face recogni— tion based on LDA. The short paper here makes compare on theory and experimental data analysis on several Face Recognition system using LDA—Based Algorithm,such as Eigenfaces(using PCA),Fisherfaces,DLDA,VDLDA and VD— FLDA.The experimental results show that the VDFLDA method is the best of al1.
Platform: | Size: 222208 | Author: 费富里 | Hits:

[matlabLDAMatab

Description: 用matlab编写的lde算法,实现的数据分析,抽取分类信息和压缩特征空间维数-Lde prepared using matlab algorithm to achieve the data analysis, feature extraction classified information and compressed space dimension
Platform: | Size: 1024 | Author: zhx | Hits:

[matlabLDA_KNN

Description: 对随机选择的iris数据,用LDA进行特征提取,然后用K近邻分类器分类的完整程序-Feature extraction using LDA,and perform classification via KNN
Platform: | Size: 3072 | Author: 苗晨 | Hits:

[matlabpqrst-detection-clas

Description: this for pqrst detection .......................and its classification using lda feature extraction and nntool-this is for pqrst detection .......................and its classification using lda feature extraction and nntool
Platform: | Size: 1507328 | Author: pandey_ji | Hits:

CodeBus www.codebus.net