Welcome![Sign In][Sign Up]
Location:
Search - fehlberg

Search list

[Othermatlab_Runge-Kutta-Fehlberg

Description: matlabMATLAB使用龙格-库塔-芬尔格(Runge-Kutta-Fehlberg)方法来解ODE问题。
Platform: | Size: 200629 | Author: Zeal | Hits:

[Other resourceR-K-F

Description: 较著名的解初值微分方程的数值方法——自适应Runge-Kutta-Fehlberg算法
Platform: | Size: 987 | Author: 田建飞 | Hits:

[Other resourceRunge-Kutta

Description: Runge-Kutta-Fehlberg method
Platform: | Size: 7994 | Author: xx | Hits:

[Mathimatics-Numerical algorithmsODE问题 解法

Description: MATLAB使用龙格-库塔-芬尔格方法来解ODE问题. it is used Runge-Kutta-Fehlberg method to solve ODE problems.
Platform: | Size: 201107 | Author: ygstrh | Hits:

[AlgorithmRunge-Kutta

Description: Runge-Kutta-Fehlberg method
Platform: | Size: 8192 | Author: xx | Hits:

[Othermatlab_Runge-Kutta-Fehlberg

Description: matlabMATLAB使用龙格-库塔-芬尔格(Runge-Kutta-Fehlberg)方法来解ODE问题。-matlabMATLAB the use of Runge- Kutta- Fehlerg (Runge-Kutta-Fehlberg) approach to the solution of ODE problems.
Platform: | Size: 200704 | Author: Zeal | Hits:

[AlgorithmR-K-F

Description: 较著名的解初值微分方程的数值方法——自适应Runge-Kutta-Fehlberg算法-More well-known solutions of initial value differential equations numerical methods- adaptive Runge-Kutta-Fehlberg algorithm
Platform: | Size: 1024 | Author: 田建飞 | Hits:

[AlgorithmRunge-KuttaC++

Description: 在使用龙格-库塔(RK)方法对连续系统进行数字仿真时,为了保证数值计算的稳定性以及仿真结果具有足够的精度,通常采用变步长策略。为了有效地解决变步长仿真计算过程中,输出节点与计算节点不相吻合的问题,该文在前人工作的基础上,提出了一个具有大稳定域的四阶连续RK公式对。该公式对在不增加微分方程的右端函数值的计算次数的前提下,可以给出积分步距中任意一点上的数值解,因而具有更大的应用价值。仿真结果表明,该公式对是有效可行的。 -In the use of Runge- Kutta (RK) methods for continuous system for digital simulation, in order to guarantee the stability of numerical calculation and simulation results have sufficient accuracy, usually variable step strategy. In order to effectively solve variable step simulation process, the output nodes and computing nodes does not correspond to the problem, the text in the previous work on the basis of a large stable region for the fourth-order RK formula right. The formula on the right side not to increase the differential equations to calculate the number of functions under the premise can be given integral step in any point on the numerical solution, which has a greater application value. Simulation results show that the formula is feasible and effective.
Platform: | Size: 1024 | Author: lvjianfeng | Hits:

[AlgorithmIvAdLor

Description: C-code for adaptive Runge-Kutta-Fehlberg integrator for Lorenz Butterfly Attractor.
Platform: | Size: 1024 | Author: Vlad | Hits:

[AlgorithmRUNGE_KUTTA_FEHLBERG_ALGORITHM

Description: RUNGE-KUTTA-FEHLBERG ALGORITHM,Mathematica的代码,代码透明,适合修改成为自己的程序。-RUNGE-KUTTA-FEHLBERG ALGORITHM, Mathematica code, code transparency, suitable amendments into their own procedures.
Platform: | Size: 2048 | Author: he | Hits:

[matlabRunge-Kutta-Fehlberg

Description: Runge-Kutta-Fehlberg法 解初值问题常微分程组-Runge-Kutta-Fehlberg method to solve ordinary differential equations initial value problem
Platform: | Size: 2048 | Author: wuhao | Hits:

[Algorithmsaxplaxltest31

Description: Runge Kutta Fehlberg方法求解微分方程 有实例 和方法-Runge Kutta Fehlberg method for ode
Platform: | Size: 1024 | Author: 刘文杰 | Hits:

[OtherSHOOTING-METHOD-FOR-SECOND

Description: SHOOTING METHOD******************************************************** * NUMERICAL SOLUTION OF SECOND ORDER, LINEAR, ORDINARY DIFFERENTIAL * * EQUATION(BOUNDARY VALUE PROBLEM) BY TRANSFORMING IT TO SET OF FIRST * * ORDER EQUATIONS USING RUNGE-KUTTA-FEHLBERG 5-th ORDER METHOD -SHOOTING METHOD******************************************************** * NUMERICAL SOLUTION OF SECOND ORDER, LINEAR, ORDINARY DIFFERENTIAL * * EQUATION(BOUNDARY VALUE PROBLEM) BY TRANSFORMING IT TO SET OF FIRST * * ORDER EQUATIONS USING RUNGE-KUTTA-FEHLBERG 5-th ORDER METHOD
Platform: | Size: 15360 | Author: amin | Hits:

[Algorithmrkf

Description: Runge-kutta-Fehlberg法求解一阶非线性常微分方程-Runge-kutta-Fehlberg method to solve first-order nonlinear ordinary differential equations
Platform: | Size: 288768 | Author: tao | Hits:

[MPIrkf

Description: 自适应步长的Runge-Kutta-Fehlberg法解初问题常微分刚性方程组-Adaptive step size Runge-Kutta-Fehlberg method for solving initial problem of ordinary differential equations
Platform: | Size: 1024 | Author: zhangsongbo | Hits:

[Othersuanfa

Description: 作业二: 请编写MATLAB程序用最优步长控制和变步长龙格-库塔-费尔别格(Runge-Kutta-Fehlberg)法求解如下刚体自由转动动力学方程: -Please write MATLAB to solve the following rigid body free rotation dynamics equation by using the most Uber long control and the transmud-kutt-fehlberg method:
Platform: | Size: 2048 | Author: zhangjun | Hits:

[Othersuanfa2

Description: 作业二: 请编写MATLAB程序用最优步长控制和变步长龙格-库塔-费尔别格(Runge-Kutta-Fehlberg)法求解如下刚体自由转动动力学方程: -Please write MATLAB to solve the following rigid body free rotation dynamics equation by using the most Uber long control and the transmud-kutt-fehlberg method:
Platform: | Size: 89088 | Author: zhangjun | Hits:

[Othersuanfa3

Description: 请编写MATLAB程序用最优步长控制和变步长龙格-库塔-费尔别格(Runge-Kutta-Fehlberg)法求解如下刚体自由转动动力学方程:-Please write MATLAB to solve the following rigid body free rotation dynamics equation by using the most Uber long control and the transmud-kutt-fehlberg method:
Platform: | Size: 196608 | Author: zhangjun | Hits:

[Othersuanfa4

Description: 请编写MATLAB程序用最优步长控制和变步长龙格-库塔-费尔别格(Runge-Kutta-Fehlberg)法求解如下刚体自由转动动力学方程:-Please write MATLAB to solve the following rigid body free rotation dynamics equation by using the most Uber long control and the transmud-kutt-fehlberg method:
Platform: | Size: 22528 | Author: zhangjun | Hits:

[Othersuanfa5

Description: 请编写MATLAB程序用最优步长控制和变步长龙格-库塔-费尔别格(Runge-Kutta-Fehlberg)法求解如下刚体自由转动动力学方程:-Please write MATLAB to solve the following rigid body free rotation dynamics equation by using the most Uber long control and the transmud-kutt-fehlberg method:
Platform: | Size: 242688 | Author: zhangjun | Hits:

CodeBus www.codebus.net