Welcome![Sign In][Sign Up]
Location:
Search - fourier slice

Search list

[matlab123

Description: 在matlab的环境下证明傅里叶切片定理-At the matlab environment Fourier slice theorem proved
Platform: | Size: 151552 | Author: 王彬 | Hits:

[matlabthefouriermatlab

Description: 用matlab语言实现傅里叶切片定理,以及基于反投影及滤波反投影的CT图像重建的程序设计试验-Matlab language with Fourier slice theorem, and on the back projection and filtered back projection image reconstruction program design CT test
Platform: | Size: 200704 | Author: 戚曼 | Hits:

[Special EffectsFourier-slice-proof-of-the-theorem

Description: 该源代码是以matlab内置的体模为例,分别从0和90度来证明傅里叶切片定理,包括源代码和结果的截图。-Fourier slice proof of the theorem
Platform: | Size: 20480 | Author: wendong200801 | Hits:

[Software EngineeringGabor-bianhuan

Description: 连续Gabor变换事实上是对f 作一个好的定位切片之后,即给函数f 开窗后再取它的Fourier变换。-Continuous Gabor transform is in fact a good positioning slice of f, that is, to the function f window and then take its Fourier transform.
Platform: | Size: 163840 | Author: 五佳佳 | Hits:

[Otherfourierslice

Description: 验证傅里叶切片定理,可减少傅里叶变换的计算量-fourier slice
Platform: | Size: 1024 | Author: Elizabeth | Hits:

[Special Effectsfourier

Description: 中心切片定理,主要用于医学图像重建的matlab程序代码-Central slice theorem, mainly for medical image reconstruction matlab code
Platform: | Size: 1024 | Author: 袁志涛 | Hits:

[File FormatctRecontruction

Description: Set of functions performing ct reconstruction tasks like a radon transformation, a simple backprojection, a filtered backprojection using a convolution in the spatial domain, a filtered backprojection using a 2D Fourier transformation, and a filtered back projection using the central slice theorem. It includes the function myCtRecontruction that should run out of the box and uses Matlab s Shepp Logan Phantom for demonstration. It is also possible to run the myCtReconstruction with an argument myCtRecontruction(anyCtDataSet) to perform image reconstruction on a custom data set.-Set of functions performing ct reconstruction tasks like a radon transformation, a simple backprojection, a filtered backprojection using a convolution in the spatial domain, a filtered backprojection using a 2D Fourier transformation, and a filtered back projection using the central slice theorem. It includes the function myCtRecontruction that should run out of the box and uses Matlab s Shepp Logan Phantom for demonstration. It is also possible to run the myCtReconstruction with an argument myCtRecontruction(anyCtDataSet) to perform image reconstruction on a custom data set.
Platform: | Size: 6144 | Author: Kin | Hits:

[Bio-RecognizeFBP-with-fourier-slice-theorem-(2)

Description: FBP with fourier slice theorem
Platform: | Size: 5120 | Author: PBJ | Hits:

[Picture Viewersliceprojection

Description: 傅里叶中心切片定理的一种证明 matlab-One kind of the center of the Fourier Slice Theorem matlab
Platform: | Size: 56320 | Author: 王昱舜 | Hits:

[OtherctRec

Description: Fourier Slice Theorem, Radon Transform
Platform: | Size: 10240 | Author: sudha | Hits:

[Graph programctRecontruction

Description: 该附件的函数可实现CT重建的功能,如简单的反投影,在空间域中使用卷积的滤波反投影,采用了二维傅立叶变换的滤波反投影,并利用中心切片定理滤波反投影。 CT技术诞生以来, 人们已经发展了众多的图像重建算法, 但各种算法均存在着各自的优缺点。解析重建(Analytic Reconstruction, AR)和迭代重建(Iterative Reconstruction, IR)是CT图像重建的两种基本方法。滤过反投影(Filtered Back Projection, FBP)是解析重建的主要算法, 代数重建算法(Algebraic Reconstruction Technique, ART)是迭代重建中常用的算法。虽然世界上第一台医用CT就采用ART, 但FBP很快就代替ART成为CT图像重建的“金标准”, 这是由于ART计算速度慢、所需存储空间大, 在计算机技术水平不是很高的年代, 它的应用和发展受到了限制。(CT reconstruction package Set of functions performing ct reconstruction tasks like a radon transformation, a simple backprojection, a filtered backprojection using a convolution in the spatial domain, a filtered backprojection using a 2D Fourier transformation, and a filtered back projection using the central slice theorem.)
Platform: | Size: 5120 | Author: 佳佳娃娃 | Hits:

[OtherCT

Description: 基于傅里叶切片理论,将CT截面图进行三维重建,然后进行任意角度剪切,可用来3D虚拟视点产生(Based on the Fourier slice theory, the CT section is reconstructed in three dimensions, and then the arbitrary angle is cut, which can be used to generate the virtual view of the 3D.)
Platform: | Size: 19884032 | Author: xxlj | Hits:

CodeBus www.codebus.net