CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - fractal simulink
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - fractal simulink - List
[
Fractal program
]
Fractal
DL : 0
图像分析的simulink仿真,可以直观地考察分形的具体过程-Simulink simulation of image analysis can be visually inspected the specific process of fractal
Update
: 2025-02-19
Size
: 9kb
Publisher
:
李林
[
matlab
]
ForcedPendulum
DL : 0
This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q + sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986) -This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega+ omega/Q+ sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986)
Update
: 2025-02-19
Size
: 8kb
Publisher
:
Mike Gao
[
matlab
]
DA-hoan-chinh
DL : 0
Simulate Inverted Pendulum in Simulink
Update
: 2025-02-19
Size
: 250kb
Publisher
:
kid
[
matlab
]
abhge
DL : 0
Correlation diagram shown in detail the time domain and frequency domain, Partial least squares method, It can be directly calculated multi-fractal spectrum.
Update
: 2025-02-19
Size
: 7kb
Publisher
:
qaofiefang
[
matlab
]
ji186
DL : 0
The method of cumulative contribution rate SNR largest independent component analysis algorithm, Fractal dimension calculation algorithm matlab code blankets.
Update
: 2025-02-19
Size
: 57kb
Publisher
:
btvntn
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.