Welcome![Sign In][Sign Up]
Location:
Search - function optimization

Search list

[AI-NN-PRMYGA_2

Description: 遗传算法解决双变量的函数最优化问题,有按钮的界面,用bc所编,生动模拟遗传进化过程-genetic algorithm to solve the two- variable optimization function, the button interface, using bc prepared by the vivid simulation of the process of genetic evolution
Platform: | Size: 5120 | Author: 连宙辉 | Hits:

[Windows Develop遗传算法代码

Description: 这是遗传算法进行函数优化的程序,可以运行成功,需要的就下吧-This is the source code of genetic algorithm for function optimization, it can run ,down it if you need it.
Platform: | Size: 21504 | Author: wlr | Hits:

[AI-NN-PR遗传算法工具箱

Description: 如何利用遗传算法工具箱函数编写求解实际优化问题的MATLAB程序-how to use genetic algorithm toolbox function optimization prepared to solve practical problems MATLAB
Platform: | Size: 106496 | Author: | Hits:

[OS program20056153639781

Description: 本文采用C++开发遗传算法,并由次算法解决最短路算法,函数最优化算法,取得了良好的效果。-this paper, C development of genetic algorithms, meeting with the shortest path algorithm for solving algorithms, function optimization algorithm, achieved good results.
Platform: | Size: 477184 | Author: 高路新 | Hits:

[matlabheixianghanshuyouhua

Description: 基于遗传算法和神经网络的黑箱函数优化举例matlab程序-based on genetic algorithms and neural network as a black box function optimization procedures for Matlab
Platform: | Size: 2048 | Author: 张鹏 | Hits:

[matlabPSOt

Description: 大家好,这是一个基于粒子群优化算法的函数优化问题的MATLAB源码,希望能给大家提供帮助-Hello everyone, this is a particle swarm optimization algorithm based on function optimization problems MATLAB source code, I hope everyone can help
Platform: | Size: 759808 | Author: 邓高峰 | Hits:

[matlabFunOpt

Description: 用蚂蚁群算法 编写的函数优化 matlab程序-Ants swarm optimization with the preparation of procedures for the function optimization matlab
Platform: | Size: 2048 | Author: 博击长空 | Hits:

[AI-NN-PRPSO

Description: 基于matlab的粒子群(PSO)算法求解BANANA函数的极值-PSO Algorithm for Banana function optimization (Matalab)
Platform: | Size: 1024 | Author: | Hits:

[OtherParticle-Swarm-Optimization-Ebook

Description: 粒子群优化算法 电子书 带变异算子的粒子群优化算法.KDH 改进的多目标粒子群算法.caj 改进的基本粒子群优化算法.kdh 基于粒子群算法的多目标函数优化问题研究.NH 粒子群算法及其在布局优化中的应用.KDH 粒子群优化算法的惯性权值递减策略研究.caj 粒子群优化算法在多目标优化中的应用与仿真.KDH 粒子群优化算法综述.CAJ 微粒群优化算法及其改进形式综述.KDH 一种新的改进粒子群算法研究.KDH-Particle Swarm Optimization with Mutation Operator e-book particle swarm optimization algorithm. KDH improved multi-objective particle swarm optimization algorithm. Caj improved elementary particle swarm optimization algorithm. Kdh particle swarm optimization algorithm based on multi-objective function optimization studies. NH Particle Swarm Optimization layout optimization algorithm and its application. KDH Particle Swarm Optimization Algorithm Decreasing Inertia Weight Strategy Study. caj particle swarm optimization in multi-objective optimization and simulation. KDH Particle Swarm Optimization Algorithm. CAJ particle swarm optimization algorithm and to improve the form of synthesis. KDH a new improved particle swarm algorithm. KDH
Platform: | Size: 3533824 | Author: 姚思 | Hits:

[Special EffectsParticle-swarm-optimization

Description: 微粒群优化算法(Particle Swarm Optimization,PSO算法)源于鸟群和鱼群群体运 动行为的研究,是一种新的群体智能优化算法,是演化计算领域中的一个新的分支。它 的主要特点是原理简单、参数少、收敛速度较快,所需领域知识少。该算法的出现引起 了学者们极大的关注,已在函数优化、神经网络训练、组合优化、机器人路径规划等领 域获得了广泛应用,并取得了较好的效果。尽管粒子群优化算法发展近十年,但无论是 理论分析还是实践应用都尚未成熟,有大量的问题值得研究。 -Particle swarm optimization (Particle Swarm Optimization, PSO algorithm) from groups of birds and fish movement behavior, is a new swarm intelligence algorithm, in the field of evolutionary computation is a new branch. Its main feature is simple in principle, few parameters, convergence is faster, less domain knowledge required. The algorithm brought the scholars are of great concern, has been in function optimization, neural network training, combinatorial optimization, robot path planning has been widely used applications, and achieved good results. Despite the development of particle swarm optimization nearly a decade, but both theory and practice applications are not yet mature, a large number of issues worth studying.
Platform: | Size: 602112 | Author: | Hits:

[AI-NN-PRAIA-in-Function-Optimization

Description: 人工免疫算法在函数优化中的应用,这篇论文比较偏理论,理解起来较费力-Artificial immune algorithm in function optimization applications, this paper compares the theoretical side, more effort to understand
Platform: | Size: 84992 | Author: 宋旸 | Hits:

[AI-NN-PRGA-function-optimization

Description: 遗传算法求解函数优化问题及其matlab的实现-Genetic algorithm matlab function optimization problems and their realization
Platform: | Size: 246784 | Author: 李娜 | Hits:

[matlabCulturalalgorithm-

Description: 用于函数优化问题的混合粒子群文化算法源程序-program of function optimization based on Cultural algorithm
Platform: | Size: 1024 | Author: zhangxiao | Hits:

[AI-NN-PRGa-in-function-optimization

Description: 遗传算法在函数优化中的应用研究,通过实例介绍遗传算法的具体应用方法等-Genetic algorithms in function optimization, applied research, through the specific example to illustrate the application of genetic algorithm methods
Platform: | Size: 1502208 | Author: yu tianhao | Hits:

[AI-NN-PRNSGA2-based-function-optimization

Description: NSGA2是一种快速非支配排序的经典遗传算法,我们利用NSGA2对函数进行优化。-NSGA2-based function optimization.
Platform: | Size: 3072 | Author: feifei | Hits:

[Software EngineeringMultimodal-function-optimization

Description: 多峰函数优化问题,用matlab实现其功能。-Multimodal function optimization problem with matlab function.
Platform: | Size: 3072 | Author: winksdriver | Hits:

[Algorithmfunction-optimization

Description: 遗传算法用于函数的最优化计算,程序有C语言编写-genetic algorithm C used in function optimization
Platform: | Size: 237568 | Author: 刘文政 | Hits:

[matlabFunction-Optimization

Description: Genetic Algorithm for Function Optimization
Platform: | Size: 5120 | Author: Jyoti | Hits:

[matlabnonlinear-function-optimization

Description: 可以用来获取一元非线性函数得最大值或者最小值,适用于无约束的一元函数寻优-nonlinear function optimization
Platform: | Size: 1024 | Author: 黎索亚 | Hits:

[AI-NN-PRFunction optimization algorithm

Description: 遗传算法提供了求解非线性规划的通用框架,它不依赖于问题的具体领域。遗传算法的优点是将问题参数编码成染色体后进行优化, 而不针对参数本身, 从而不受函数约束条件的限制; 搜索过程从问题解的一个集合开始, 而不是单个个体, 具有隐含并行搜索特性, 可大大减少陷入局部最小的可能性。而且优化计算时算法不依赖于梯度信息,且不要求目标函数连续及可导,使其适于求解传统搜索方法难以解决的大规模、非线性组合优化问题。(Genetic algorithm provides a general framework for solving nonlinear programming, which does not depend on the specific problem domain. The advantage of genetic algorithm is that the problem parameters are encoded into chromosomes for optimization, rather than the parameters themselves. The search process starts from a set of problem solutions, rather than a single individual, and has the implicit parallel search feature, which can greatly reduce the possibility of falling into the local minimum. Moreover, the algorithm does not rely on gradient information and does not require the objective function to be continuous and differentiable, which makes it suitable for solving large-scale and nonlinear combinatorial optimization problems that are difficult to be solved by traditional search methods.)
Platform: | Size: 33792 | Author: FZenjoys | Hits:
« 12 3 4 5 6 7 8 9 10 ... 50 »

CodeBus www.codebus.net