Welcome![Sign In][Sign Up]
Location:
Search - fuzzy m-file in matlab

Search list

[Special EffectsSimTIFFToImage.m

Description: Converts a monochrome mosaiced TIFF file to simulator format. 在matlab上运行,去除模糊图像,重影。-Converts a monochrome TIFF file mosaiced t o simulator format. In Matlab run, remove fuzzy images ghost.
Platform: | Size: 4057 | Author: 小明 | Hits:

[Special EffectsSimTIFFToImage.m

Description: Converts a monochrome mosaiced TIFF file to simulator format. 在matlab上运行,去除模糊图像,重影。-Converts a monochrome TIFF file mosaiced t o simulator format. In Matlab run, remove fuzzy images ghost.
Platform: | Size: 4096 | Author: 小明 | Hits:

[matlabC-mean

Description: 模糊C均值算法的m文件带自己的解释,希望能给大家一点学习上的帮助。 -fuzzy c-means algorithm m document with its own interpretation, in the hope of giving the public a little bit of learning assistance.
Platform: | Size: 13312 | Author: 孙李娜 | Hits:

[matlabFuzzy_Control_ebook

Description: 一本结合模糊推论系统matlab code源码的电子书,是学习模糊控制最佳用书。-This file contains code for solving some exercises, design problems, and examples in the book:Kevin M. Passino and Stephen Yurkovich, Fuzzy Control, Addison Wesley Longman, Menlo Park, CA
Platform: | Size: 4988928 | Author: Vlog | Hits:

[Compress-Decompress algrithmschaos

Description: 模糊数学工具箱,内置函数,matlab实用分析,M文件类型-Fuzzy Math Toolbox, built-in functions, matlab utility analysis, M File Type
Platform: | Size: 9216 | Author: wangxiao | Hits:

[AI-NN-PRwork

Description: matlab补偿模糊神经网络源代码 本文中有两个函数m文件:model126.m是一个用于预测的完全没有用工具箱函数的补偿模糊神经网络主程序,用于仿真、对比训练数据和网络输出的差异;cb.m是一个非线性系统的数学模型,在model126.m中用“ode45”函数求解这个数学模型后,可以得到105个x1(t)、x2(t)和y(t),从而建立起一个两输入一输出的补偿模糊神经网络。(There are two function m file in this paper: model126.m is a completely useless for predicting the compensation fuzzy neural network toolbox function for the main program, the difference between the simulation and contrast the training data and the output of the network; cb.m is a mathematical model of a nonlinear system, using the "ode45" function to solve the mathematical model in the model126.m after that can be 105 X1 (T), X2 (T) and Y (T), which established a two input and one output fuzzy neural network.)
Platform: | Size: 1024 | Author: Zenia | Hits:

CodeBus www.codebus.net