Location:
Search - graham hull
Search list
Description: 格雷厄姆法求凸壳的C程序-Graham method for convex hull of the C program
Platform: |
Size: 1024 |
Author: 杜斐 |
Hits:
Description: 8. 判断点是否在凸多边形内 9. 寻找点集的graham算法 10.寻找点集凸包的卷包裹法 11.判断线段是否在多边形内 12.求简单多边形的重心 13.求凸多边形的重心14.求肯定在给定多边形内的一个点15.求从多边形外一点出发到该多边形的切线16.判断多边形的核是否存在-8. In judging whether a convex polygon 9. Find points of graham algorithm 10. Find point set of convex hull volume parcels Act 11. Line judge whether the polygon 12. Seeking simple polygon focus 13. Convex Polygon focus 14. For sure in a given polygon within the a point 15. demand from outside the polygon to the starting point of the polygon Tangent 16. the nuclear polygon judgment whether there
Platform: |
Size: 4096 |
Author: 孤星赶月 |
Hits:
Description: C code for "Computational Geometry in C (Second Edition)": Code function Chapter pointer directory ----------------------------------------------------- Triangulate Chapter 1, Code 1.14 /tri Convex Hull(2D) Chapter 3, Code 3.8 /graham Convex Hull(3D) Chapter 4, Code 4.8 /chull sphere.c Chapter 4, Fig. 4.15 /sphere Delaunay Triang Chapter 5, Code 5.2 /dt SegSegInt Chapter 7, Code 7.2 /segseg Point-in-poly Chapter 7, Code 7.13 /inpoly Point-in-hedron Chapter 7, Code 7.15 /inhedron Int Conv Poly Chapter 7, Code 7.17 /convconv Mink Convolve Chapter 8, Code 8.5 /mink Arm Move Chapter 8, Code 8.7 /arm-C code for "Computational Geometry in C (Second Edition)": Code function Chapter pointer directory----------------------------------------------------- Triangulate Chapter 1, Code 1.14 /tri Convex Hull(2D) Chapter 3, Code 3.8 /graham Convex Hull(3D) Chapter 4, Code 4.8 /chull sphere.c Chapter 4, Fig. 4.15 /sphere Delaunay Triang Chapter 5, Code 5.2 /dt SegSegInt Chapter 7, Code 7.2 /segseg Point-in-poly Chapter 7, Code 7.13 /inpoly Point-in-hedron Chapter 7, Code 7.15 /inhedron Int Conv Poly Chapter 7, Code 7.17 /convconv Mink Convolve Chapter 8, Code 8.5 /mink Arm Move Chapter 8, Code 8.7 /arm
Platform: |
Size: 67584 |
Author: Mark |
Hits:
Description: 各种关于几何的算法实现。包括
计算几何学库函数(线相交,面积等等)
寻找凸包 graham 扫描法
判断点是否在多边形内。同时包含一些测试-on various geometric algorithm. In terms of geometry library functions (lines intersect, size, etc.) for convex hull graham scanning judgment and whether the polygon. Both contain some tests
Platform: |
Size: 12288 |
Author: changxia |
Hits:
Description: 计算几何学常用算法库 C++语言实现
代码内容 计算几何学常用算法库,包括以下算法:
确定两条线段是否相交
判断点p是否在线段上
判断点q是否在多边形Polygon内
计算多边形的面积
寻找凸包 graham 扫描法
-geometry calculation commonly used algorithm for C language code as calculated geometry commonly used algorithm library, include the following algorithm : to determine whether the intersection of two segments to judge whether p-point of judgment, whether the point q Polygon Polygon estimate Polygon area for convex hull graham scanning
Platform: |
Size: 12288 |
Author: henry |
Hits:
Description: 算法分析课程中实现的凸包算法,效率很高,有很大的参考价值-algorithm analysis programs to achieve the convex hull algorithms, highly efficient and have great reference value
Platform: |
Size: 4758528 |
Author: zhangli |
Hits:
Description: 凸包最常用的凸包算法是Graham扫描法和Jarvis步进法.本程序用Graham扫描法实现凸包的绘制-convex hull of the most commonly used convex hull algorithm is scanning and Graham Jarvis stepping law. The procedures used G raham scanning method to achieve the convex hull mapping
Platform: |
Size: 7168 |
Author: gaici |
Hits:
Description: 使用C++实现的Graham扫描法(求解凸包问题),可设置生成随机点的个数、样式,同时支持设置显示范围、显示算法处理时间及使用文件导入导出点等功能。(文件格式为,头四个字节是点的个数,以后分别是各个点的x坐标和y坐标,每个数值均占4字节)。-The use of C++ Realize the Graham scan method (for solving convex hull problems), can be set to generate a random number of points, patterns, and at the same time to support the set display range, display algorithm processing time and the use of document features such as import and export points. (File format for the first four bytes is the number of points, after all points are x coordinates and y coordinates, each account for 4-byte value).
Platform: |
Size: 51200 |
Author: 王晓桐 |
Hits:
Description: 用动态数组法实现求凸壳的程序(格雷厄姆法),可供其它人员参考。-Method using dynamic array of procedures for Convex Hull (Graham Law) for other officers.
Platform: |
Size: 447488 |
Author: neus |
Hits:
Description: c语言计算几何
三角化 Ch1, Code 1.14
凸形外壳[2D] Ch3, Code 3.8
凸形外壳[3D] Ch4, Code 4.8
球 Chapter 4, Fig. 4.15
德劳内类型 Ch5, Code 5.2
...See *English version.-\Computational Geometry in C\ the book s recipe
Triangulate Chapter 1, Code 1.14 /tri
Convex Hull[2D] Chapter 3, Code 3.8 /graham
Convex Hull[3D] Chapter 4, Code 4.8 /chull
sphere.c Chapter 4, Fig. 4.15 /sphere
Delaunay Triang Chapter 5, Code 5.2 /dt
SegSegInt Chapter 7, Code 7.2 /segseg
Point-in-poly Chapter 7, Code 7.13 /inpoly
Point-in-hedron Chapter 7, Code 7.15 /inhedron
Int Conv Poly Chapter 7, Code 7.17 /convconv
Mink Convolve Chapter 8, Code 8.5 /mink
Arm Move Chapter 8, Code 8.7 /arm
Platform: |
Size: 57344 |
Author: XJ |
Hits:
Description: Graham convex hull sofware
Platform: |
Size: 8192 |
Author: azizul azhar |
Hits:
Description: cnvex hull with algorith graham
Platform: |
Size: 3072 |
Author: artavazd |
Hits:
Description: 构造凸包接口函数,传入原始点集大小n,点集p(p原有顺序被打乱!),返回凸包大小,凸包的点在convex中-Construct convex hull interface function, introduced the original point set size n, the point set p (p the original order has been disrupted!), Returns the size of the convex hull, convex hull of the points in the convex
Platform: |
Size: 1024 |
Author: JP |
Hits:
Description: Graham凸包扫描算法,算法速度快,很经典的,程序内部注释比较全面。-Graham scan algorithm for convex hull algorithm is fast, very classic, more comprehensive program within the comment.
Platform: |
Size: 268288 |
Author: 陈栋 |
Hits:
Description: sample of opencv and convex hull graham algoritme
Platform: |
Size: 2235392 |
Author: faraz |
Hits:
Description: In this project, three convex hull algorithms are implemented in java. Three algorithms are Brute Force, Graham’s Scan and Jarvis’ March.
Platform: |
Size: 9216 |
Author: zephrion |
Hits:
Description: Graham扫描算法 : 大体思路是将不是凸包顶点的点从点集中去掉。
找出S中具有最小y坐标的点p(通过选取最左边的点打破平局)
根据点和p的连线 与 x轴正方向所成的角度,对S中的点进行排序(由小到大),并将p放在最前面。
从p点开始扫描排序后的S集合。如果这些点都在凸包上,则每三个相继的点p1,p2,p3满足以下性质:p3在向量<p1,p2>的左边.如果出现相继的三个点p1,p2,p3不满足上述性质,则p2点一定不是凸包的顶点,应立即去除。-Graham scan algorithm: the general idea is not a convex hull vertex points from a point focus on remove.
Identify S with the minimum y coordinate of the point p (select the left-most point to break a tie)
According to the connection point and p x-axis positive direction into the angle, sort the points in S (small to large), and p up front.
Scan sorted S-collection from p. These points on the convex hull of every three successive points p1, p2, p3, meet the following properties: p3, in vector <p1,p2> the left side if the successive three points p1 is p2, p3 does not meet the the above properties, then p2 is definitely not the vertex of the convex hull should be immediately removed.
Platform: |
Size: 1024 |
Author: 李刚 |
Hits:
Description: 这是我用matlab写的一个寻找凸包算法的实现,该算法是基于graham算法的一个改进-the source realize an improvement algorithm of searching convex hull which based on graham algorithm in matlab
Platform: |
Size: 1024 |
Author: 天水 |
Hits:
Description: 用matlab求二维凸包,并求出二维凸包的面积-Using matlab to calculate the two-dimensional convex hull, and find the two-dimensional convex hull area
Platform: |
Size: 1024 |
Author: 刘兴 |
Hits:
Description: Graham s scan algorithm for finding convex hull using linked list.
Platform: |
Size: 2048 |
Author: Arunkumar V S |
Hits: