CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - huisu
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - huisu - List
[
Other resource
]
c++huisu
DL : 0
背包回溯法,初来乍到如有其他问题还请各位多多指教.-knapsack backtracking, just arrived at that if other issues also invited to the exhibitions.
Date
: 2008-10-13
Size
: 4.99kb
User
:
lee
[
assembly language
]
huisu
DL : 0
回溯(b a c k t r a c k i n g)是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间( solution space),这个空间必须至少包含问题的一个解(可能是最优的)。在迷宫老鼠问题中,我们可以定义一个包含从入口到出口的所有路径的解空间;在具有n 个对象的0 / 1背包问题中(见1 . 4节和2 . 2节),解空间的一个合理选择是2n 个长度为n 的0 / 1向量的集合,这个集合表示了将0或1分配给x的所有可能方法。当n= 3时,解空间为{ ( 0 , 0 , 0 ),( 0 , 1 , 0 ),( 0 , 0 , 1 ),( 1 , 0 , 0 ),( 0 , 1 , 1 ),( 1 , 0 , 1 ),( 1 , 1 , 0 ),( 1 , 1 , 1 ) }。-retrospective (b a c k t r a c k i n g) is a systematic search to answer the question. To achieve retrospective, the first issue of the need for a definition of the solution space (solution space), The space must contain at least one solution to the problem (which may be optimal). Rats in a maze problem, we can contain a definition from the entrance to the export of the solution space trails; n is the object of the 0 / 1 knapsack problem (see 1. 4 and 2. 2) The solution space is a reasonable choice of two n length of the 0 n / a vector set, this assembly that it will 0 or 1 x allocated to all possible ways. When n = 3, the solution space for the ((0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)).
Date
: 2008-10-13
Size
: 28.91kb
User
:
john
[
Other resource
]
huisu
DL : 0
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。本文档进行讲解。
Date
: 2008-10-13
Size
: 18.88kb
User
:
哈啊
[
Other resource
]
huisu
DL : 0
out< \"please input the number of the nodes\"<<endl cin>>nodesNum cout<<\"please input the graph\"<<endl for( i = 1 i<=nodesNum i++) for( j = 1 j <= nodesNum j++) cin>>graph[i][j] */
Date
: 2008-10-13
Size
: 117.52kb
User
:
李默
[
Other resource
]
huisu
DL : 0
回溯法实现多个经典算法,其中包含多种 不同算法哦
Date
: 2008-10-13
Size
: 5.16kb
User
:
lin yahong
[
Other resource
]
huisu
DL : 0
用回溯法实现马周游,学习算法设计时做的实验
Date
: 2008-10-13
Size
: 18.07kb
User
:
骆驼
[
Data structs
]
c++huisu
DL : 0
背包回溯法,初来乍到如有其他问题还请各位多多指教.-knapsack backtracking, just arrived at that if other issues also invited to the exhibitions.
Date
: 2025-07-06
Size
: 5kb
User
:
lee
[
assembly language
]
huisu
DL : 0
回溯(b a c k t r a c k i n g)是一种系统地搜索问题解答的方法。为了实现回溯,首先需要为问题定义一个解空间( solution space),这个空间必须至少包含问题的一个解(可能是最优的)。在迷宫老鼠问题中,我们可以定义一个包含从入口到出口的所有路径的解空间;在具有n 个对象的0 / 1背包问题中(见1 . 4节和2 . 2节),解空间的一个合理选择是2n 个长度为n 的0 / 1向量的集合,这个集合表示了将0或1分配给x的所有可能方法。当n= 3时,解空间为{ ( 0 , 0 , 0 ),( 0 , 1 , 0 ),( 0 , 0 , 1 ),( 1 , 0 , 0 ),( 0 , 1 , 1 ),( 1 , 0 , 1 ),( 1 , 1 , 0 ),( 1 , 1 , 1 ) }。-retrospective (b a c k t r a c k i n g) is a systematic search to answer the question. To achieve retrospective, the first issue of the need for a definition of the solution space (solution space), The space must contain at least one solution to the problem (which may be optimal). Rats in a maze problem, we can contain a definition from the entrance to the export of the solution space trails; n is the object of the 0/1 knapsack problem (see 1. 4 and 2. 2) The solution space is a reasonable choice of two n length of the 0 n/a vector set, this assembly that it will 0 or 1 x allocated to all possible ways. When n = 3, the solution space for the ((0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)).
Date
: 2025-07-06
Size
: 29kb
User
:
john
[
VC/MFC
]
huisu
DL : 0
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。本文档进行讲解。-Backtracking is a also a jump of a systemic nature of the search algorithm. To give instructions in this document.
Date
: 2025-07-06
Size
: 19kb
User
:
哈啊
[
Data structs
]
huisu
DL : 0
out< "please input the number of the nodes"<<endl cin>>nodesNum cout<<"please input the graph"<<endl for( i = 1 i<=nodesNum i++) for( j = 1 j <= nodesNum j++) cin>>graph[i][j] */-out < please input the number of the nodes <<endl cin>> nodesNum cout << please input the graph <<endl for (i = 1 i <= nodesNum i++) for (j = 1 j <= nodesNum j++) cin>> graph [i] [j]* /
Date
: 2025-07-06
Size
: 118kb
User
:
李默
[
Data structs
]
huisu
DL : 0
回溯法实现多个经典算法,其中包含多种 不同算法哦-Multiple classic backtracking algorithm, which includes a variety of different algorithms Oh
Date
: 2025-07-06
Size
: 5kb
User
:
lin yahong
[
Data structs
]
huisu
DL : 0
用回溯法实现马周游,学习算法设计时做的实验-With backtracking realize horse travel, learning algorithm designed to do the experiment
Date
: 2025-07-06
Size
: 1.81mb
User
:
骆驼
[
Mathimatics-Numerical algorithms
]
huisu
DL : 0
最优装载回溯法求解:主要的思想就是首先将第一艘船近可能的装满-Optimal loading back method: the main ideology is the first section of a vessel filled with nearly possible
Date
: 2025-07-06
Size
: 1kb
User
:
[
AI-NN-PR
]
huisu
DL : 0
人工智能实验题目——回溯算法解决8数码问题-Experimental artificial intelligence topics- Digital 8 retrospective algorithm to solve problem
Date
: 2025-07-06
Size
: 937kb
User
:
寂静岭
[
Windows Develop
]
huisu
DL : 0
算法分析中的实例,利用回溯的思想解决八皇后问题-Examples of algorithm analysis, the use of eight back of the Queen' s idea to solve problem
Date
: 2025-07-06
Size
: 2kb
User
:
chunchen
[
Data structs
]
huisu
DL : 0
算法分析中,回溯法经典范例的实现,并有完整的测试数据-Algorithm analysis, the retrospective method of realization of the classic examples, as well as complete test data
Date
: 2025-07-06
Size
: 23kb
User
:
fanhenglong
[
Other
]
huisu-lvxing
DL : 0
旅行售货员问题,采用回溯算法实现,可以运行,带注释-Traveling salesman problem
Date
: 2025-07-06
Size
: 1kb
User
:
ssss
[
AI-NN-PR
]
Queen
DL : 0
N皇后问题,hopfield,回溯法,人工智能-N-Queen hopfield,huisu
Date
: 2025-07-06
Size
: 2.17mb
User
:
kobe
[
Data structs
]
huisu-suafa
DL : 0
回溯算法,实现n位的回溯算法,里面有算法的详细说明,对递归回溯算法进行详细说明。-Backtracking algorithm to achieve n bits of the backtracking algorithm, which has detailed description of the algorithm on recursive backtracking algorithm in detail.
Date
: 2025-07-06
Size
: 1.08mb
User
:
黄曜
[
Console
]
NQueens-huisu
DL : 0
使用回溯的软件架构风格来实现N皇后问题,可以用于比较效率-using huisu style to solve the N-Queens problem
Date
: 2025-07-06
Size
: 257kb
User
:
何清
«
1
2
»
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.