Welcome![Sign In][Sign Up]
Location:
Search - image processing in curvelet

Search list

[Multimedia DevelopImage Restoration

Description: 图像复原工具包,希望能为研究图像复原的同学提供帮助-Image Restoration Kit, which seeks to recover the image study to help students
Platform: | Size: 408576 | Author: 111 | Hits:

[Special EffectsCurvelet

Description: 主要讲解curvelet变换在图像处理方面的学术论文-Mainly on the curvelet transform in image processing papers
Platform: | Size: 7429120 | Author: 媛媛 | Hits:

[Special Effectscurvelet

Description: curvelet变换的论文,对于学习curvelet变换进行图像处理很有帮助-curvelet transform paper, learning is helpful curvelet transform for image processing
Platform: | Size: 4593664 | Author: 闫刘 | Hits:

[Special EffectsFDCT

Description: 第二代离散曲波变换的源程序,包括图像处理中的应用-Second-generation discrete curvelet transform of the source, including the application of image processing
Platform: | Size: 19456 | Author: 任凭 | Hits:

[OtherCurvelet

Description: Curvelet变换在图像处理中的应用综述-Summary of Application of Curvelet transform in image processing
Platform: | Size: 73728 | Author: 秦嘉俊 | Hits:

[MiddleWareCurveLab-2.1.1

Description: 曲波变换工具箱2.1.1版本,对二维和三维数据进行曲波变换(wrapping和usfft方式),在图像处理领域广泛利用-this package is a curvelet transform package, you can do the transform in wrapping or usfft for 2d or 3d image. it is widely used in image processing domain
Platform: | Size: 834560 | Author: pudukeng | Hits:

[source in ebookSparse image and signal processing

Description: 这本书在稀疏的多尺度图像和信号处理提出了艺术状态,包括线性多尺度变换,如小波,脊波和曲波变换、非线性、多尺度变换基于中值和数学形态学算子。最近的稀疏性和形态多样性的概念描述和利用各种问题,如去噪,反问题正规化,稀疏信号分解,盲源分离,压缩感知。 这本书的理论和实践研究相结合的领域,如天文学、生物学、物理学、数字媒体应用和取证。最后一章探讨了信号处理中的一个范式转换,表明以前的信息取样和提取的限制可以用非常重要的方法加以克服。 MATLAB和IDL代码伴随这些方法和应用程序重现。 实验并说明了在相关网站上可下载的研究的推理和方法。(This book presents the state of the art in sparse and multiscale image and signal processing, covering linear multiscale transforms, such as wavelet, ridgelet, or curvelet transforms, and non-linear multiscale transforms based on the median and mathematical morphology operators. Recent concepts of sparsity and morphological diversity are described and exploited for various problems such as denoising, inverse problem regularization, sparse signal decomposition, blind source separation, and compressed sensing. This book weds theory and practice in examining applications in areas such as astronomy, biology, physics, digital media, and forensics. A final chapter explores a paradigm shift in signal processing, showing that previous limits to information sampling and extraction can be overcome in very significant ways.)
Platform: | Size: 30863360 | Author: lxfei73 | Hits:

CodeBus www.codebus.net