CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - improved ARTIFICIAL FISH-SWARM
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - improved ARTIFICIAL FISH-SWARM - List
[
Other
]
afsa2
DL : 0
摘 要:在分析人工鱼群算法存在不足的基础上,对人工鱼群算法加以改进,提出了一种改进型人工鱼群算 法。该算法提高了全局搜索能力和收敛速度,并用于求解具有变量边界约束的非线性复杂函数最优化问题。 仿真结果表明,改进后的人工鱼群算法具有精度高、搜索速度快等特点,是一种求解复杂函数全局最优化的智 能算法。 -Abstract: In analyzing the deficiencies of artificial fish-swarm algorithm based on improved artificial fish-swarm algorithm, an improved artificial fish-swarm algorithm. The algorithm improve the global search ability and convergence speed, and used to solve the border with variables constrained nonlinear optimization problem of complex functions. The simulation results show that the improved artificial fish-swarm algorithm with high precision, fast search, etc., is a complex function for solving global optimization of the intelligent algorithm.
Update
: 2025-02-17
Size
: 25kb
Publisher
:
duweijie
[
Other
]
333
DL : 0
摘 要:在分析人工鱼群算法存在不足的基础上,对人工鱼群算法加以改进,提出了一种改进型人工鱼群算 法。该算法提高了全局搜索能力和收敛速度,并用于求解具有变量边界约束的非线性复杂函数最优化问题。 仿真结果表明,改进后的人工鱼群算法具有精度高、搜索速度快等特点,是一种求解复杂函数全局最优化的智 能算法 -Abstract: In analyzing the deficiencies of artificial fish-swarm algorithm based on improved artificial fish-swarm algorithm, an improved artificial fish-swarm algorithm. The algorithm improve the global search ability and convergence speed, and used to solve the border with variables constrained nonlinear optimization problem of complex functions. The simulation results show that the improved artificial fish-swarm algorithm with high precision, fast search, etc., is a complex function for solving global optimization of the intelligent algorithm
Update
: 2025-02-17
Size
: 185kb
Publisher
:
duweijie
[
AI-NN-PR
]
AFS
DL : 0
关于人工鱼群算法的一个实例,可以实现所有的人工鱼的基本功能,是采用c开发的-Artificial fish-swarm algorithm on an instance, you can realize all the basic functions of the artificial fish is developed using c
Update
: 2025-02-17
Size
: 4kb
Publisher
:
g
[
AI-NN-PR
]
EAFSA
DL : 0
改进的人工鱼群算法,优化后实现,可视化。-Improved artificial fish-swarm algorithm, optimized to achieve, visualization.
Update
: 2025-02-17
Size
: 2kb
Publisher
:
佳佳
[
AI-NN-PR
]
Afish
DL : 0
人工鱼群算法MATLAB实现的程序,经改进后可用于实际工程问题.-MATLAB realization of artificial fish-swarm algorithm of procedures can be improved for practical engineering problems.
Update
: 2025-02-17
Size
: 2kb
Publisher
:
谢枫
[
Special Effects
]
788877
DL : 0
改进的人工鱼群算法和Powell法结合的医学图像配准文献,希望对大家有帮助-Improved artificial fish swarm algorithm and Powell method with the literature of medical image registration, we hope to help
Update
: 2025-02-17
Size
: 110kb
Publisher
:
guiyangyang
[
matlab
]
improved-AFSA
DL : 0
基于混沌迭代式的改进鱼群算法用于对非线性函数寻优-an improved Artificial Fish-swarm Algorithm on optimization for unlinear function
Update
: 2025-02-17
Size
: 1kb
Publisher
:
Zh.Chen
[
Mathimatics-Numerical algorithms
]
reservoirs
DL : 0
基于改进人工鱼群算法的梯级水库群优化调度reservoirs-Algorithm based on improved artificial fish swarm optimization scheduling cascade reservoirs
Update
: 2025-02-17
Size
: 659kb
Publisher
:
lin
[
AI-NN-PR
]
yuqunsuanfa
DL : 0
使用了缩短视野和步长的改进人工鱼群算法,对于学习人工鱼群算法的人们很有帮助!-Use a shorter step length vision and improved artificial fish swarm algorithm for learning AFSA helpful people!
Update
: 2025-02-17
Size
: 3kb
Publisher
:
shengshi_80
[
Software Engineering
]
Improved-Artificial-Fish-Swarm-Algorithm
DL : 0
Robot Global Path Planning Based on Improved Artificial Fish-Swarm Algorithm
Update
: 2025-02-17
Size
: 279kb
Publisher
:
hussein
[
Mathimatics-Numerical algorithms
]
yichuansuanfa
DL : 0
遗传算法优化BP神经网络、改进的模糊C-均值聚类、遗传算法(粒子群算法、人工鱼群算法等)的投影寻踪模型等遗传算法的简单集合。-Genetic algorithm to optimize the BP neural network, an improved fuzzy C- average clustering and genetic algorithm,(particle swarm optimization (pso), artificial fish algorithm, etc.) of the projection pursuit model: collection of simple genetic algorithm (ga).
Update
: 2025-02-17
Size
: 7kb
Publisher
:
陈孝君
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.