Welcome![Sign In][Sign Up]
Location:
Search - inverted pendulum simulation neural network

Search list

[Other resourcependulum1ctrl

Description: 用神经网络来控制一阶倒立摆,给出matlab的simulink仿真-neural network to control a band inverted pendulum, is Matlab Simulink simulation
Platform: | Size: 8930 | Author: 张得 | Hits:

[AI-NN-PRpendulum1ctrl

Description: 用神经网络来控制一阶倒立摆,给出matlab的simulink仿真-neural network to control a band inverted pendulum, is Matlab Simulink simulation
Platform: | Size: 8192 | Author: 张得 | Hits:

[source in ebookneuralnetwork-daolibai

Description: 倒立摆matlab程序设计与实现 倒立摆matlab程序设计与实现-inverted pendulum Matlab Program Design and Implementation of an inverted pendulum Matlab Program Design and Implementation
Platform: | Size: 1024 | Author: 郭振兴 | Hits:

[matlab2

Description: 一级倒立摆的模糊控制与神经网络控制。Simulink仿真环境。使用说明:在使用模糊控制时先把*.fis导入workspace,否则无法运行。-An inverted pendulum fuzzy control and neural network control. Simulink simulation environment. Usage: in the use of fuzzy control to import*. fis first workspace, otherwise it is impossible to run.
Platform: | Size: 20480 | Author: 时光 | Hits:

[AI-NN-PRinvertedpendulum

Description: 倒立摆是一种复杂、时变、非线性、强耦合、自然不稳定的高阶系统,许多抽象的控制理论概念都可以通过倒立摆实验直观的表现出来。基于人工神经网络BP算法的倒立摆小车实验仿真训练模型,其倒立摆BP网络为4输入3层结构。输入层分别为小车的位移和速度、摆杆偏离铅垂线的角度和角速度。隐含层单元数16个。输出层设置为1个输出单元。输入层采用Tansig函数,隐含层采用Logsig函数,输出层采用Purelin函数。用Matlab 6.5数值计算软件对模型进行学习训练,并与线性反馈控制逻辑算法对比,表明倒立摆控制BP算法精度高、收敛快,在非线性控制、鲁棒控制等领域具有良好的应用前景。 -Inverted pendulum is a complex, time-varying, nonlinear, strong coupling, the natural instability of the high-end systems, many of the abstract concept of control theory to pass through the inverted pendulum experiment demonstrated intuitive. Based on artificial neural network BP algorithm inverted pendulum experiment simulation training model car, the Inverted Pendulum BP network input 3-layer structure of 4. Input layer, respectively, for the car s displacement and speed of deviation from the plumb line placed under the angle and angular velocity. Hidden layer unit number 16. Output layer is set to an output unit. Tansig function using input layer, hidden layer Logsig function used, the output layer Purelin function. Numerical calculation using Matlab 6.5 software for learning and training model, and linear feedback control logic algorithm comparison, show that the inverted pendulum control of BP algorithm and high precision, fast convergence in nonlinear control, robust control and
Platform: | Size: 217088 | Author: 月到风来AA | Hits:

[AlgorithmTripleinvertedpendulumweightedfuzzyneuralnetworkco

Description: 为了提高三级倒立摆系统控制的响应速度和稳定性,在设计Mamdani 型模糊推理规则控制器控制倒立摆系统稳定的基础上, 设计了一种更有效率的基于Sugeno 型模糊推理规则的模糊神经网络控制器。该控制器使用BP 神经网络和最小二乘法的混 合算法进行参数训练,能够准确归纳输入输出量的模糊隶属度函数和模糊逻辑规则。通过与Mamdani 型控制器的仿真对比, 表明该Sugeno 型模糊神经网络控制器对三级倒立摆系统的控制具有良好的稳定性和快速性,以及较高的控制精度。-In order to improve the three-level control of inverted pendulum system response speed and stability, in the design of Mamdani-type fuzzy inference rules of the system controller to control the stability of inverted pendulum on the basis of a more efficient design based on Sugeno-type fuzzy inference rules of fuzzy neural network controller. The controller is the use of BP neural network and hybrid least squares training algorithm parameters can be accurately summed up the amount of input and output fuzzy membership function and fuzzy logic rules. Mamdani-type controller with a simulation comparison shows that the Sugeno-type fuzzy neural network controller for the three-tier control of inverted pendulum system with good stability and fast, as well as a higher control precision.
Platform: | Size: 551936 | Author: 月到风来AA | Hits:

[matlabpendulum_neurul

Description: 经典倒立摆问题的神经网路控制器仿真,对了解神经控制和simulink仿真很有用-Classic inverted pendulum control problem of neural network simulation, neural control and the understanding of the usefulness of simulation simulink
Platform: | Size: 11264 | Author: Charly | Hits:

[matlabdaolibai

Description: 倒立摆的仿真程序,作为模糊神经网络的入门程序很不错。-Inverted pendulum simulink simulation program as a fuzzy neural network entry procedure very well
Platform: | Size: 7168 | Author: artemis | Hits:

[Mathimatics-Numerical algorithms20110619-1

Description: 针对BP神经网络存在的缺点,本文利用遗传算法能够收敛到全局最优解而 且遗传算法鲁棒性强的特点将遗传算法同神经网络结合起来,不仅能发挥神经网 络的泛化映射能力,而且使神经网络具有很快的收敛性以及较强的学习能力。为 了验证遗传算法优化BP神经网络的有效性,本文将此算法应用到直线一级倒立 摆的稳定控制中,同时利用UbVIEW语言界面开发能力强,并且数据输入、网 络通信、硬件控制简单的优点,制作了倒立摆的仿真控制和实时控制软件。仿真 研究表明,遗传算法优化BP神经网络的控制器设计是可行的,可以很好的实现倒 立摆的稳定控制。 -BP neural network for the shortcomings, this paper genetic algorithm can converge to global optimal solution and And genetic algorithm robustness characteristics of the genetic algorithm combined with neural networks, neural networks can not only play The generalization ability of network mapping, and the neural network with fast convergence and a strong ability to learn. As The validation of genetic algorithm to optimize the effectiveness of BP neural network, this algorithm is applied to this line a handstand Put stability control, and interface development using UbVIEW language ability, and data entry, network Network communications, hardware, the advantages of simple control, produced a simulation of the inverted pendulum control and real-time control software. Simulation Studies have shown that genetic algorithm BP neural network controller design is feasible, can achieve a good fall Li put stability control.
Platform: | Size: 4796416 | Author: 高飞 | Hits:

[AI-NN-PRNonlinearly-Adaptive

Description: :针对能够采用仿射非线性表示的含有未建模动态的SISO非线性系统,讨论了一种基于神经网络的自适应 控制方法.该方法对受控对象的已知部分.采用反馈线性化方法设计控制器,用神经网络在线补偿未建模动态及 外部干扰等引起的误差,从而实现自适应控制。对具有未建模动态的双车倒立摆设计了输出反馈自适应控制系 统.仿真表明该方法是有效的。 -A discussion is devoted to design neural network adaptive control scheme of the SISO (single input and single output)nonlinear system with unmodeled dynamics.According to the known part of the plant.feedback Iinearization method iS used to design the controller.The error resulted from the un~ modeled dynamics and the external disturbance is compensated by online neural network.The neural networks are designed as a five layer fuzzy neural network and its construction is optimized by genetic al— gorithms.It has been used to approtimate the nonlinear function of system and to compesate the error of unmodeled dynamic.The design of neural network adaptive controller has better performances.The method is verified by the digital simulation of tWO—·cart with inverted·-pendulum system and unmodeled dynamics.
Platform: | Size: 163840 | Author: | Hits:

[matlabneurul_pendulum

Description: BP神经网络控制一级倒立摆simulink仿真-BP neural network control an inverted pendulum simulink simulation
Platform: | Size: 12288 | Author: | Hits:

[AI-NN-PRRBF-inverted-pendulum-system

Description: 利用RBF神经网络对倒立摆系统进行控制,仿真证明能够对倒立摆的位置和速度进行很好的跟踪-By using RBF neural network to control the inverted pendulum system, the simulation prove that the position and speed of the inverted pendulum can be a good tracking
Platform: | Size: 12288 | Author: 小布 | Hits:

[OtherFuzzyRbf

Description: 关于倒立摆的仿真以及BP神经网络的仿真及其相关技术文档-Simulation and related technical documentation on inverted pendulum simulation and BP neural network
Platform: | Size: 18340864 | Author: 牛军政 | Hits:

[Otherrbf_IP

Description: 基于RBF神经网络自适应控制的一级直线倒立摆仿真——simulink-linear inverted pendulum simulation based on the RBF neural network adaptive control
Platform: | Size: 16384 | Author: 毛文杰 | Hits:

CodeBus www.codebus.net