Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - kernel density estimate
Search - kernel density estimate - List
DL : 0
kde全称是kernel density estimation.基于核函数的概率密度估计方法。是模式识别中常用的算法之一-KDE which is kernel density estimation is used to estimate probabilty function. It is mostly used in pattern recogntion
Date : 2025-07-15 Size : 2.17mb User : herman

DL : 0
Bivariate Kamma Kernel Density Estimate for large data set-optimize method
Date : 2025-07-15 Size : 42kb User :

DL : 0
利用正态分布和核密度估计计算分位数。包括正态分布分位数函数、核估计概率密度函数、核估计累计分布概率函数、核估计计算分位数函数。-Normal and kernel density estimation using sub-digit calculation. Including the normal quantile function, kernel estimate probability density function, cumulative distribution probability function kernel estimation, kernel estimate calculated quantile function.
Date : 2025-07-15 Size : 6.3mb User : 细细

DL : 0
estimate kernel density in matlab
Date : 2025-07-15 Size : 15kb User : wal

一篇核密度估计资料,一种新的核函数选择方法-A kernel density estimate data,A new kernel selection method
Date : 2025-07-15 Size : 197kb User : zhou

the Kernel Particle Filter (KPF)—is proposed for visual tracking in image sequences. The KPF invokes kernels to form a continuous estimate of the posterior density function. Particles are allocated based on the gradient information estimated from the kernel density estimate of the posterior. Results from simulations and experiments with real video data show the improved performance of the proposed algorithm when compared with that of the standard particle filter. The superior performance is evident in scenarios of small system noise or weak dynamic models where the standard particle filter usually fails
Date : 2025-07-15 Size : 335kb User : hythem

用变形核密度模型对数据的统计分布进行估计,常用于金融信用分析、财产保险精算等领域,是一个很有效、常用的非参数模型-Deformation of the nuclear density model of the statistical distribution of the data to estimate the financial credit analysis, property insurance and actuarial fields, is a very effective and commonly used non-parametric model
Date : 2025-07-15 Size : 1kb User : 严一洲

针对核密度估计背景建模方法运算量大难以实时应用的问题,提出了一种基于背景直方图分布的快速核密度估计背景建模方法。选用三角核函数进行核密度估计,根据三角核带宽函数的截断效应,引入背景分布的直方图完成快速背景建模,在保证目标检测准确性的同时提高运算速度。测试实验结果验证了算法能够满足监控系统的实时性要求。-For kernel density estimation is difficult to satisfy real-time applications because of large amount of calculation, this paper proposes a fast kernel density estimation method of background modeling based on the background histogram. Triangle kernel function is used to estimate the kernel density. According to the triangular truncation effect of kernel-bandwidth function, background samples histogram is built to complete the fast background modeling. The accuracy of target detection is ensured while processing speed is increased. Experimental results prove that the algorithm satisfies the real-time requirements of surveillance systems
Date : 2025-07-15 Size : 1.34mb User :

这是一个有关parzen窗估计的代码,用来估计概率密度函数。采用了方窗、指数窗、高斯窗函数三种核函数,附有matlab程序。-This is an estimate of the code related to parzen window, used to estimate the probability density function. With a side window, the index window, Gaussian window function three kinds of kernel function, with matlab program.
Date : 2025-07-15 Size : 55kb User :

DL : 0
关于核密度估计来复原图像的MATLAB代码-About kernel density estimate for restoring the image of MATLAB code
Date : 2025-07-15 Size : 2.21mb User : ww

用非参数估计的方法(核密度估计)来估计互信息-Nonparametric estimation method (kernel density estimation) to estimate the mutual information
Date : 2025-07-15 Size : 2kb User : 秦坤

DL : 0
核函数估计(一元,高斯核函数),包括带宽优化-kernel density estimation (KDE) is a non-parametric way to estimate the probability density function of a random variable.
Date : 2025-07-15 Size : 1kb User : luke jons

DL : 0
计算核密度估计算法实现,可延伸扩展加入自己的想法,便于编程和调用。(you can use it to calculate kernel density estimate and compute about problem.)
Date : 2025-07-15 Size : 1.85mb User :

核密度估计得背景提取的改进,通过关键桢获得背景模型(Improvement of background extraction of kernel density estimate)
Date : 2025-07-15 Size : 2kb User : sunjianfen
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.