Description: 基于kernel pca的非线性降维算法,原文发表于神经计算杂志上,有兴趣者可以先看论文。-PCA-based kernel of nonlinear reduced dimension algorithm, the original published in the Journal of neural computation, those interested can read papers. Platform: |
Size: 1024 |
Author:武旗 |
Hits:
Description: KPCA的提出者亲自写的程序。是一份很值得收藏的经典代码。-KPCA the author himself procedures. It is a very worthwhile collection of classic code. Platform: |
Size: 1024 |
Author:sun |
Hits:
Description: pca+fisher是将核函数应用到人脸识别研究中去-pca+ fisher is the kernel function is applied to face recognition research go Platform: |
Size: 11264 |
Author:zhangwenming |
Hits:
Description: 统计模式识别工具箱(Statistical Pattern Recognition Toolbox)包含:
1,Analysis of linear discriminant function
2,Feature extraction: Linear Discriminant Analysis
3,Probability distribution estimation and clustering
4,Support Vector and other Kernel Machines-
This section should give the reader a quick overview of the methods implemented in
STPRtool.
• Analysis of linear discriminant function: Perceptron algorithm and multiclass
modification. Kozinec’s algorithm. Fisher Linear Discriminant. A collection
of known algorithms solving the Generalized Anderson’s Task.
• Feature extraction: Linear Discriminant Analysis. Principal Component Analysis
(PCA). Kernel PCA. Greedy Kernel PCA. Generalized Discriminant Analysis.
• Probability distribution estimation and clustering: Gaussian Mixture
Models. Expectation-Maximization algorithm. Minimax probability estimation.
K-means clustering.
• Support Vector and other Kernel Machines: Sequential Minimal Optimizer
(SMO). Matlab Optimization toolbox based algorithms. Interface to the
SVMlight software. Decomposition approaches to train the Multi-class SVM classifiers.
Multi-class BSVM formulation trained by Kozinec’s algorithm, Mitchell-
Demyanov-Molozenov algorithm Platform: |
Size: 4271104 |
Author:查日东 |
Hits:
Description: 为解决PCA不适合多指标综合分析中非线性主成分分析的问题 ,采用核主成分分析 (kpca)方法 ,对我国不同地区 16种腐乳的品质进行了综合评价。
-PCA is not suitable to address the many indicators of a comprehensive analysis of non-linear principal component analysis of the problem, using Kernel Principal Component Analysis (kpca) method, 16 kinds of different regions of our country the quality of fermented bean curd had a comprehensive evaluation. Platform: |
Size: 1024 |
Author:fengyu |
Hits:
Description: 使用核PcA来识别图片,图片为200张测试图片,200张训练图片,包含在在压缩文件中。-To identify the use of nuclear PcA picture, pictures, for 200 test images, 200 training images, is included in the compressed file. Platform: |
Size: 3163136 |
Author:戴步成 |
Hits:
Description: Kernel Entropy Component Analysis,KECA方法的作者R. Jenssen自己写的MATLAB代码,文章发表在2010年5月的IEEE TPAMI上面-Kernel Entropy Component Analysis, by R. Jenssen, published in IEEE TPAMI 2010.
We introduce kernel entropy component analysis (kernel ECA) as a new method for data transformation and dimensionality reduction. Kernel ECA reveals structure relating to the Renyi entropy of the input space data set, estimated via a kernel matrix using Parzen windowing. This is achieved by projections onto a subset of entropy preserving kernel principal component analysis (kernel PCA) axes. This subset does not need, in general, to correspond to the top eigenvalues of the kernel matrix, in contrast to the dimensionality reduction using kernel PCA. We show that kernel ECA may produce strikingly different transformed data sets compared to kernel PCA, with a distinct angle-based structure. A new spectral clustering algorithm utilizing this structure is developed with positive results. Furthermore, kernel ECA is shown to be an useful alternative for pattern denoising. Platform: |
Size: 3072 |
Author:johhnny |
Hits:
Description: 在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验.
-Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and recognition test. Platform: |
Size: 1024 |
Author:李海 |
Hits:
Description: 模式识别课程作业,pca和kpca,以及一个人脸可。其中kpca的核函数是多项式。-Pattern Recognition course assignments, pca and kpca, and a person can face. Where the kernel function is polynomial kpca. Platform: |
Size: 3430400 |
Author:perfy yang |
Hits:
Description: Kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a reproducing kernel Hilbert space with a non-linear mapping. Platform: |
Size: 2048 |
Author:Karthikeyan |
Hits: