Location:
Search - kpf
Search list
Description: 详细介绍了KPF(核粒子滤波)算法在视觉目标跟踪中的应用,并与标准的PF进行比较,能得到更好的估计值,鲁棒性也较好。
Platform: |
Size: 342853 |
Author: lt |
Hits:
Description: 详细介绍了KPF(核粒子滤波)算法在视觉目标跟踪中的应用,并与标准的PF进行比较,能得到更好的估计值,鲁棒性也较好。-Details of KPF (nuclear particle filter) algorithm in the visual target tracking application, and the PF with the standard for comparison, can get better estimates, robustness is also good.
Platform: |
Size: 343040 |
Author: |
Hits:
Description: 该代码用于实现粒子滤波视觉目标跟踪(PF)、卡尔曼粒子滤波视觉目标跟踪(KPF)、无迹粒子滤波视觉目标跟踪(UPF)。它们是本人这两年来编写的核心代码,用于实现鲁棒的视觉目标跟踪,其鲁棒性远远超越MeanShift(均值转移)和Camshift之类。用于实现视觉目标跟踪的KPF和UPF都是本人花费精力完成,大家在网上是找不到相关代码的。这些代码虽然只做了部分代码优化,但其优化版本已经成功应用于我们研究组研发的主动视觉目标跟踪打击平台中。现在把它们奉献给大家!-These codes are used to realize particle filter based visual object tracking (PF), kalman particle filter based visual object tracking, unscented particle filter based visual object tracking. Their robustness is far beyond the classical visual object tracking algorithms such as Mean-Shift (MeanShift) and CamShift。The codes of KPF and UPF for visual object tracking cost a great of my energy, and you can not find any relating algorithm codes on internet! Our research group have optimized these codes and applied them to develop a platform for active visual object tracking. Now, I dedicate them to you and wish you love them!
Platform: |
Size: 396288 |
Author: 朱亮亮 |
Hits:
Description: the Kernel Particle Filter
(KPF)—is proposed for visual tracking in image sequences.
The KPF invokes kernels to form a continuous estimate of the
posterior density function. Particles are allocated based on the
gradient information estimated from the kernel density estimate
of the posterior. Results from simulations and experiments with
real video data show the improved performance of the proposed
algorithm when compared with that of the standard particle filter.
The superior performance is evident in scenarios of small system
noise or weak dynamic models where the standard particle filter
usually fails
Platform: |
Size: 343040 |
Author: hythem |
Hits: