Location:
Search - life ga
Search list
Description: 王小平《遗传算法——理论、应用与软件实现》随书光盘,内容有:
\\GA 本书中所附源程序C或C++代码文件及其可执行文件
Scs.cpp 基本分类算法源程序,输入数据文件cfile.txt,efile.txt,gfile.txt,pfile.txt,rfile.txt,tfile.txt
Sga.c 基本遗传算法源程序, 输入数据文件input,输出文件output
A_life.c 基于遗传算法的人工生命模拟源程序, 输入数据文件world
GA_nn.c 基于遗传算法优化神经网络结构源程序,输入数据文件sample
Patmat.c 基于遗传算法提取基元图形源程序
\\Sources 遗传算法相关自由软件及代码
-Wang Xiaoping "genetic algorithm -- Theory, Application and Software" CD with the book, the contents are : \\ GA book accompanying C or C source code files and executable files Scs.cpp basic classification algorithm-source Order, the importation of data files cfile.txt, efile.txt, gfile.txt. pfile.txt, rfile.txt. tfile.txt Sga.c basic genetic algorithm source files, input data files input, output file output A_life.c based on genetic algorithm simulation source Artificial Life, import data files GA_nn.c world based on genetic algorithm optimization neural network structure source, import data files Patmat.c sample extraction based on genetic algorithm-based graphics yuan source \\ Sour ces genetic algorithms and the associated free software code
Platform: |
Size: 4516410 |
Author: zhuli |
Hits:
Description: 王小平《遗传算法——理论、应用与软件实现》随书光盘,内容有:
\GA 本书中所附源程序C或C++代码文件及其可执行文件
Scs.cpp 基本分类算法源程序,输入数据文件cfile.txt,efile.txt,gfile.txt,pfile.txt,rfile.txt,tfile.txt
Sga.c 基本遗传算法源程序, 输入数据文件input,输出文件output
A_life.c 基于遗传算法的人工生命模拟源程序, 输入数据文件world
GA_nn.c 基于遗传算法优化神经网络结构源程序,输入数据文件sample
Patmat.c 基于遗传算法提取基元图形源程序
\Sources 遗传算法相关自由软件及代码
-Wang Xiaoping "genetic algorithm-- Theory, Application and Software" CD with the book, the contents are : \ GA book accompanying C or C source code files and executable files Scs.cpp basic classification algorithm-source Order, the importation of data files cfile.txt, efile.txt, gfile.txt. pfile.txt, rfile.txt. tfile.txt Sga.c basic genetic algorithm source files, input data files input, output file output A_life.c based on genetic algorithm simulation source Artificial Life, import data files GA_nn.c world based on genetic algorithm optimization neural network structure source, import data files Patmat.c sample extraction based on genetic algorithm-based graphics yuan source \ Sour ces genetic algorithms and the associated free software code
Platform: |
Size: 4515840 |
Author: zhuli |
Hits:
Description: 基于遗传算法的人工生命模拟的源码。通过该源码,希望大家能对遗传算法的掌握有所帮助。-Based on Genetic Algorithm-source artificial life simulation. Through the source code, I hope everyone can grasp the genetic algorithm be helpful.
Platform: |
Size: 7168 |
Author: panny |
Hits:
Description: life game
这是一个编程经典小游戏,玩起来很有意思,有点像扫雷,方便编程人员理解存储空间的概念。-life game This is a classic game programming, playing together is very interesting, a bit like mine, convenient storage space programmers to understand the concept.
Platform: |
Size: 1425408 |
Author: 枭龙 |
Hits:
Description: 源程序C或C++代码文件及其可执行文件
Scs.cpp 基本分类算法源程序,输入数据文件cfile.txt,efile.txt,gfile.txt,pfile.txt
,rfile.txt,tfile.txt
Sga.c 基本遗传算法源程序, 输入数据文件input,输出文件output
A_life.c 基于遗传算法的人工生命模拟源程序, 输入数据文件world
GA_nn.c 基于遗传算法优化神经网络结构源程序,输入数据文件sample
Patmat.c 基于遗传算法提取基元图形源程序 -C or C++ source code files and executable files Scs.cpp basic classification algorithm source code, the input data file cfile.txt, efile.txt, gfile.txt, pfile.txt, rfile.txt, tfile.txt Sga.c basic genetic algorithm source code, the input data file input, the output file output A_life.c genetic algorithm-based simulation of artificial life source, the input data file world GA_nn.c genetic algorithm based neural network source, the input data file sample Patmat. c extraction based on genetic algorithm source graphics primitives
Platform: |
Size: 692224 |
Author: yuanping |
Hits:
Description: 基于GA-GM(1,1)模型的航空发电机状态趋势分析结果较GM(1,1)模型所得结果平均相对误差降低0.14个百分点,分析结果更加精确,为灰色分析模型及其优化模型在航空发电机剩余使用寿命预测技术研究中的应用奠定基础。同时也说明遗传优化算法在航空发电机状态趋势分析中的应用是可行的且具有实际科学意义。这也为GA-GM(1,1)模型在其他领域中的应用指明了道路。-GA-GM (1,1) model-based aviation generator status trend analysis results than GM (1,1) model results mean relative error is reduced by 0.14 percentage points, more precise analysis of the results, the gray analysis model and its optimization model Aviation generator remaining service life prediction technology research laid the foundation. Also genetic optimization algorithm Aviation generator status trend analysis is feasible and practical scientific significance. It also pointed the way for GA-GM (1,1) model in other areas.
Platform: |
Size: 8192 |
Author: 鹿丸九 |
Hits:
Description: SpringSide是以Spring Framework为核心的,Pragmatic风格的JavaEE应用参考示例,是... Github提倡社交网络式的开源生活,人人都可以为SpringSide贡献代码。-Spring Framework as the core of the SpringSide is a Pragmatic the style of the the JavaEE application of reference example, ... Github advocate social network-style open source life, everyone can think SpringSide contribute code.
Platform: |
Size: 1091584 |
Author: simon |
Hits:
Description: 基本遗传算法的MATLAB语言源程序。(遗传算法的应用范围极其广泛,它可应用于函数优化、组合优化、生产调度问题、自动控制、机器人学、图像处理、人工生命、遗传编程以及机器学习等领域。)-Basic genetic algorithm matlb language sourc-e code. (Genetic algorithm extremely broad range of applications, it can be applied to function optimization, combinatorial optimization, production scheduling problem, automatic control, robotics, image processing, artificial life, genetic programming, as well as machine learning and other fields.)
Platform: |
Size: 3072 |
Author: derek |
Hits:
Description: 遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。-Genetic Algorithm (Genetic Algorithm) is a type of reference biological evolution law (survival of the fittest, survival of the fittest genetic mechanism) random search method evolved. It was first proposed by the United States J.Holland professor in 1975, its main feature is the direct object of the structure of the operation, continuity of derivation and function defined does not exist have a global implicit inherent parallelism and better optimization capability with probability of optimization method that can automatically obtain and guide optimized search space, the search direction adaptively adjust the rules do not need to determine. These properties GA, has been widely used in combinatorial optimization, machine learning, signal processing field, adaptive control and artificial life. It is a modern computing on smart key technology.
Platform: |
Size: 2048 |
Author: tyy |
Hits:
Description: a b s t r a c t
A new metaheuristic method, the Cuckoo Search (CS) algorithm, based on the life of a bird family is proposed in this paper for optimal design of static synchronous compensator (STATCOM) in a multimachine environment. PV curves are illustrated to determine the best location of STATCOM. The STATCOM parameter tuning problem is converted to an optimization problem which is solved by CS Algorithm. The
performance of the proposed CS based STATCOM (CSSTATCOM) is compared with Genetic Algorithm (GA) based STATCOM (GASTATCOM) and open loop STATCOM under various operating conditions and disturbances.The superiority of the proposed technique in damping oscillations and enhancing voltage profiles is confirmed through igenvalues and time domain simulation results over the GA and open loop one
Platform: |
Size: 911360 |
Author: elijj56 |
Hits:
Description: 遗传算法(Genetic Algorithms,简称 GA)是一种基于自然选择原理和自然遗传机
制的搜索(寻优)算法,它是模拟自然界中的生命进化机制,在人工系统中实现特定目
标的优化。遗传算法的实质是通过群体搜索技术,根据适者生存的原则逐代进化,最终
得到最优解或准最优解。它必须做以下操作:初始群体的产生、求每一个体的适应度、
根据适者生存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染色
体的基因并随机变异某些染色体的基因后生成下一代群体,按此方法使群体逐代进化,
直到满足进化终止条件。(可用于路径优化)(Genetic Algorithms (GA) is a search algorithm based on natural selection principle and natural genetic mechanism. It simulates the mechanism of life evolution in nature and achieves the optimization of specific targets in artificial system. The essence of the genetic algorithm is by the group search technology, according to the principle of survival of the fittest, and finally get the optimal solution or the quasi optimal solution. It must do the following: the generation of initial population, for each individual to adapt to the excellent individual 22 degrees, according to the principle of survival of the fittest, select excellent individuals selected by random chromosome pairing, cross gene and random mutation of some genes on the next generation after generation, according to this method makes the group from generation to generation until the termination condition of evolution, evolution.(it can be used for Path optimization))
Platform: |
Size: 1024 |
Author: Arriettyrain |
Hits:
Description: 人工蜂群算法自2005年被Karaboga等人提出以来,以其操作简单、参数少、易于编程实现、收敛速度快等特点而受到越来越多的关注。2007年,Karaboga【2007】使用人工蜂群算法对多变量函数进行优化,并对由人工蜂群算法(ABC),遗传算法(GA),粒子温度算法(PSO)和粒子温度灵敏演化算法(PS-EA)产生的结果进行了比较。 结果表明,人工蜂群算法优于其他算法。2009年,Karaboga【2009】使用人工蜂群算法优化大量的数值函数,并对由人工蜂群算法(ABC),遗传算法(GA),粒子温度算法(PSO),差分演化算法(DS)和进化策略(ES)产生的结果进行了比较。 结果表明,人工蜂群算法因其控制参数少、操作简群算单优于或类似于其他算法。(Artificial Bee Colony (ABC) algorithm (Dervis Karaboga 2005 [1]; Karaboga and Basturk 2009[2]), simulating the intelligent social behavior of a group of bees, aims to solve the numerical optimization problem in a given condition. Many scientific theories and engineering applications in real life can be attributed to the numerical optimization problem. For applications where there is no optimal solution or approximate solution, ABC optimization algorithm can show its advantages in a short period of time and give it a term that can be terminated at any time. Initializing a set of random solution at the very beginning and searching the optimization value with iteration according to candidate solutions generated by a certain strategy, ABC algorithm solves the problems effectively and efficiently. Due to these advantages, ABC optimization algorithm has been increasingly popular since it has been proposed by Dervis Karaboga in 2005 [1].)
Platform: |
Size: 9216 |
Author: Becky7163 |
Hits: