Welcome![Sign In][Sign Up]
Location:
Search - logistic C

Search list

[Otheran_ica_tool

Description: 一个ICA工具。This binary version of the runica() function of Makeig et al. contained in the EEG/ICA Toolbox runs 12x faster than the Matlab version. It uses the logistic infomax ICA algorithm of Bell and Sejnowski, with natural gradient and extended ICA extensions. It was programmed for unsupervised usage by Scott Makeig at CNL, Salk Institute, La Jolla CA. Sigurd Enghoff translated it into C++ code and compiled it for multiple platforms. J-R Duann has improved the PCA dimension-reduction and has compiled the linux and free_bsd versions.
Platform: | Size: 136032 | Author: aaaaaaa | Hits:

[Mathimatics-Numerical algorithms混沌时间序列预测

Description: 1、该工具箱包括了混沌时间序列分析与预测的常用方法,有: (1)产生混沌时间序列(chaotic time series) Logistic映射 - \ChaosAttractors\Main_Logistic.m Henon映射 - \ChaosAttractors\Main_Henon.m Lorenz吸引子 - \ChaosAttractors\Main_Lorenz.m Duffing吸引子 - \ChaosAttractors\Main_Duffing.m Duffing2吸引子 - \ChaosAttractors\Main_Duffing2.m Rossler吸引子 - \ChaosAttractors\Main_Rossler.m Chens吸引子 - \ChaosAttractors\Main_Chens.m Ikeda吸引子 - \ChaosAttractors\Main_Ikeda.m MackeyGLass序列 - \ChaosAttractors\Main_MackeyGLass.m Quadratic序列 - \ChaosAttractors\Main_Quadratic.m (2)求时延(delay time) 自相关法 - \DelayTime_Others\Main_AutoCorrelation.m 平均位移法 - \DelayTime_Others\Main_AverageDisplacement.m (去偏)复自相关法 - \DelayTime_Others\Main_ComplexAutoCorrelation.m 互信息法 - \DelayTime_MutualInformation\Main_Mutual_Information.m (3)求嵌入维(embedding dimension) 假近邻法 - \EmbeddingDimension_FNN\Main_FNN.m Cao方法 - \EmbeddingDimension_Cao\Main_EmbeddingDimension_Cao.m (4)同时求时延与嵌入窗(delay time & embedding window) CC方法 - \C-C Method\Main_CC_Luzhenbo.m (5)求关联维(correlation dimension) GP算法 - \CorrelationDimension_GP\Main_CorrelationDimension_GP.m (6)求K熵(Kolmogorov Entropy) GP算法 - \KolmogorovEntropy_GP\Main_KolmogorovEntropy_GP.m STB算法 - \KolmogorovEntropy_STB\Main_KolmogorovEntropy_STB.m (7)求最大Lyapunov指数(largest Lyapunov exponent) 小数据量法 - \LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein1.m \LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein2.m \LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein3.m \LargestLyapunov_Rosenstein\Main_LargestLyapunov_Rosenstein4.m (8)求Lyapunov指数谱(Lyapunov exponent spectrum) BBA算法 - \LyapunovSpectrum_BBA\Main_LyapunovSpectrum_BBA1.m \LyapunovSpectrum_BBA\Main_LyapunovSpectrum_BBA2.m (9)求二进制图形的盒子维(box dimension)和广义维(genealized dimension) 覆盖法 - \BoxDimension_2D\Main_BoxDimension_2D.m \GeneralizedDimension_2D\Main_GeneralizedDimension_2D.m (10)求时间序列的盒子维(box dimension)和广义维(genealized dimension) 覆盖法 - \BoxDimension_TS\Main_BoxDimension_TS.m \GeneralizedDimension_TS\Main_GeneralizedDimension_TS.m (11)混沌时间序列预测(chaotic time series prediction) RBF神经网络一步预测 - \Prediction_RBF\Main_RBF.m RBF神经网络多步预测 - \Prediction_RBF\Main_RBF_MultiStepPred.m Volterra级数一步预测 - \Prediction_Volterra\Main_Volterra.m Volterra级数多步预测 - \Prediction_Volterra\Main_Volterra_MultiStepPred.m (12)产生替代数据(Surrogate Data) 随机相位法 - \SurrogateData\Main_SurrogateData.m 2、在matlab环境中首先运行install.m,将工具箱所在路径添加至matlab 3、各子目录下以Main_开头的文件即是主程序文件,直接按快捷键F5运行即可 4、工具箱中所有程序均在Matlab6.5和Matlab7.1环境中调试通过,不能保证在Matlab其它版本正确运行。 5、工具箱中部分功能为试用版,敬请谅解! 6、 作者:陆振波,海军工程大学 欢迎同行来信交流与合作,更多文章与程序下载请访问我的个人主页
Platform: | Size: 579972 | Author: niuchao0511 | Hits:

[GDI-BitmapLogisticEq

Description: 混沌(Chaos),Logistic方程 X(n) = k*X(n-1)*( 1-X(n-1) ),即二次函数 f(x) = k*x(1-x), 选择适当的常数k,选择初始值 x0,迭代计算: x1=f(x0), x2=f(x1), x3=f(x2),..., 序列{ Xn }的整体"状态",敏感的依赖于常数k和初始值x0, 序列可能收敛,也可能,"乱七八糟"地振荡--产生混沌Chaos!-Chaos (Chaos), the logistic equation X (n) = k* X (n-1)* (1-X (n-1)), that is quadratic function f (x) = k* x (1-x), the election Optional appropriate constants k, the initial value of options x0, iterative calculation : x1 = f (x0), x2 = f (x), x3 = f (x2 ),..., sequence) (Xn the overall "state" sensitive dependence on constants k and initial value x0, convergent sequence may also possible, "mess" to the oscillation-- have Chaotic Chaos!
Platform: | Size: 26624 | Author: szh | Hits:

[Graph programLogisticWatermark

Description: 基于混沌的数字水印研究技术 matlab 编程 提取与嵌入-Chaos-based digital watermarking technology research extraction and Matlab programming embedded
Platform: | Size: 1024 | Author: xianzhao | Hits:

[matlab4-parameter

Description: 可以进行曲线回归拟合算法的四参数算法。函数为 y = (a-d)/(1+(x/c)^b) +d . ec50.m 为其主要函数-Can curve fitting algorithm of the four-parameter algorithm. Function y = (ad)/(1+ (X/c) ^ b)+ D. Ec50.m its main function
Platform: | Size: 2048 | Author: 2213 | Hits:

[Crack Hackchaos

Description: 利用混沌算法,进行迭代加密数字图象,Logistic映射原理.-Using chaotic algorithms, digital image encryption iteration, Logistic mapping principle.
Platform: | Size: 175104 | Author: h72946 | Hits:

[Crack Hacklogic

Description: 利用混沌影射的方法设计了一种多随机性的文件加密算法.分析了数据加密和Logistic混沌映射 的原理,提出了基于混沌方法的多随机性文件加密算法,采用VB完成了文件加密软件的设计.软件测试表 明:该加密算法的混沌特性和多随机特性增加了解密的难度,提高了加密数据的安全性,实现了密钥的随机 生成和加密算法的随机调用,使得加密后的文件更加安全.-Alluding to the use of chaos designed a multi-randomness of the file encryption algorithm. Analysis of the data encryption and Logistic chaotic map theory, put forward a method based on chaotic encryption algorithm and more random files using VB completed file encryption software design. Software Testing showed that: the encryption algorithm of chaotic characteristics and multi-random characteristics of an increase of the difficulty of decryption, the encrypted data to improve security, the realization of the randomly generated key encryption algorithm and the random call, making encrypted documents more secure.
Platform: | Size: 150528 | Author: hujun | Hits:

[AI-NN-PRlibsvm-2.89

Description: 是一種線性方成的分類器。SVM透過統計的方式將雜亂的資料以NN的方式分成兩類,以便處理。LIBLINEAR is a linear classifier for data with millions of instances and features. It supports L2-regularized logistic regression (LR), L2-loss linear SVM, and L1-loss linear SVM. -Main features of LIBLINEAR include Same data format as LIBSVM, our general-purpose SVM solver, and also similar usage Multi-class classification: 1) one-vs-the rest, 2) Crammer & Singer Cross validation for model selection Probability estimates (logistic regression only) Weights for unbalanced data MATLAB/Octave, Java interfaces
Platform: | Size: 521216 | Author: 陳彥霖 | Hits:

[matlabChaoticAttactor

Description: 混沌吸引子大全,有ikeda,logistic,honon,lorentz,rossler等等。-chaostic Attractor ikeda,logistic,honon,lorentz,rossler et.c。
Platform: | Size: 27648 | Author: 樊丽 | Hits:

[Graph DrawingLogisticMap

Description: C++变写的LOGISTIC 映射的例子,可以直观演示混沌序列的渐变过程,工程文件 各个模块都在里面,和大家分享-Written in C++ variable LOGISTIC mapping example, you can visually demonstrate the gradual process of chaotic sequence, the project file inside each module, and share ~ ~ ~
Platform: | Size: 44032 | Author: 王子涵 | Hits:

[Otherlogistic--Pseudo-Random-Number

Description: logistic 运用普适算法 来产生伪随机序列,采用c语言编写-logistic the universal algorithm Pseudo Random Number
Platform: | Size: 1024 | Author: yueyi0221 | Hits:

[ERP-EIP-OA-Portallogistic-management

Description: 利用vs2005 c#语言实现一个物流管理系统。-use C# complete loginstic management system
Platform: | Size: 1356800 | Author: huang | Hits:

[JSP/JavaSea-transport-logistic-management

Description: 我国加入WTO以来,进出口货量及进出口船舶艘次都有了大幅度的提高,给我国的国际船舶代理行业带来了发展机遇。大型的国际货代公司纷纷涌现,竞争也日趋激烈。利用先进的互联网和现代信息技术,可以帮助企业节省大量的人力,更智能化的进行信息的管理,而且可以帮助决策者及时调整公司经营策略,提高公司在同行业中的知名度,增强公司的竞争力。 天津裕佳昌国际货运有限公司原有的物流管理系统采用C/S(客户端/服务器端)结构实现,部门之间的数据不能及时有效地共享,系统维护量非常大,不易实时掌握用户的操作,而且受到操作地点和环境的限制。针对原有系统的缺陷,本文设计与实现了基于JAVA EE的B/S模式的海运物流管理系统,该系统对各个环节设置了不同权限,将过程中的所有物流信息都公布于网上,实现了信息实时共享,减少了人为因素的影响,极大地提高了工作效率。 本文对公司物流信息管理的现状进行了深入的了解与分析,采用系统科学的方法重新给出了公司物流信息管理的功能划分,将其划分为系统管理、基础数据、船务代理、货物代理、场站管理、报告管理、档案管理、财务管理、业务管理以及辅助管理十个模块来进行功能设计。-Since China joined WTO, both import/export goods and ships have increased significantly. The increasing business brings numerous chances to China international ship agents. The competition becomes more intense than ever in the history because of the emergence of more and more large, international logistic companies. By applying modern internet and information technologies, companies have been able to hire fewer employees thus saved money. They are now able to govern information more intelligently.
Platform: | Size: 1426432 | Author: 趁辎 | Hits:

[Program docRemplPalette

Description: Logistic software for algorithm bin packing 3D C langage
Platform: | Size: 18432 | Author: NHZ | Hits:

[AI-NN-PRmpRegression

Description: 多元多项式回归,即一个程序,一个程序,对于给定的数据确定最小误差平方多项式。输出值也可能被转化运用Logit变换,从而使多元logistic回归。如何应用此程序的简要描述,可以发现在C源码包文件中的倒退/ EX / README。-A program for multivariate polynomial regression, i.e., a program that determines a minimum squared error polynomial for given data. The output values may also be transformed with the logit transformation, thus enabling (multivariate) logistic regression. A brief description of how to apply this program can be found in the file regress/ex/readme in the C source package.
Platform: | Size: 28672 | Author: sdl | Hits:

[Crack HackLogistic

Description: vs 2010编程验证Logistic映射的初值敏感性和对参数的敏感性,并用matlab编程作图实现-c++ programming, verification Logistic mapping initial sensitivity and sensitivity to parameter and plotted using matlab programming
Platform: | Size: 360448 | Author: 周佳琦 | Hits:

[matlabImplementEvaluateClassification

Description: Implement and uate classi cation algorithms The classi cation models used are : (a) Logistic Regression (b) Neural Networks (c) Neural Network Package-Implement and uate classi cation algorithms The classi cation models used are : (a) Logistic Regression (b) Neural Networks (c) Neural Network Package
Platform: | Size: 1964032 | Author: Khalil | Hits:

[OpenCVRegression

Description: 实现逻辑回归的c++源码,功能完善,封装完好,能直接运行-Code of logistic regression
Platform: | Size: 9216 | Author: 刘攀文 | Hits:

[AlgorithmClassifiers

Description: 我们需要成百上千的分类器来解决现实世界的分类吗 我们评估179分类17种分类器(判别分析,贝叶斯,神经网络,支持向量机,决策树,基于规则的分类器,升压、装袋、堆放、随机森林和其他合奏,广义线性模型,线性,偏最小二乘法和主成分回归,logistic回归、多项式回归、多元自适应回归样条等方法),实现在WEKA,R(有或没有插入包),C和Matlab,包括所有目前可用的相关分类。(Do-we-Need-Hundreds-of-Classifiers-to-Solve-Real-World-ClassificationProblems)
Platform: | Size: 537600 | Author: 飞飞花儿 | Hits:

[Algorithmlogistic-regression-in-c---master

Description: 曲线拟合的带有界面的代码,包含详细的计算过程(Code with interface for curve fitting)
Platform: | Size: 8192 | Author: jack3214 | Hits:

CodeBus www.codebus.net