Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - lorenz attractor
Search - lorenz attractor - List
洛伦兹吸引子,蝴蝶效应的解法-Lorenz attractor, Butterfly Effect of Solution
Update : 2025-02-19 Size : 1kb Publisher :

这是混沌微弱信号检测中关于Lorenz奇怪吸引子的绘制的用VC编译的程序!和大家分享-This a weak signal detection on the Lorenz attractor strange rendering of the compiler with VC procedures! And to share with you! !
Update : 2025-02-19 Size : 22kb Publisher : 杨涛

文件说明: ---------------------------------------------- Main_LargestLyapunov_Rosenstein1.m 程序主文件1,直接运行此文件即可,Logistic 序列 Main_LargestLyapunov_Rosenstein2.m 程序主文件2,直接运行此文件即可,Henon 序列 Main_LargestLyapunov_Rosenstein3.m 程序主文件3,直接运行此文件即可,Lorenz 吸引子 LorenzData.dll 产生 Lorenz 离散序列 PhaSpaRecon.m 相空间重构 Lyapunov_rosenstein_2.dll Lyapunov 计算主函数 buffer_run1.dll 计算缓存1 buffer_run2.dll 计算缓存2 buffer_run3.dll 计算缓存3 -documents :------------------------- Main_LargestLyapunov_Rosenstein1.m procedures main file a direct operation of this document can be, Logistic sequence Main_LargestLyapunov_Rosenstei n2.m procedures two main documents directly running this file can be, Henon Main_LargestLyapunov_Rosenstein3 sequence. m procedure three main file directly running this file can be, Lorenz attractor LorenzData.dll have Lorenz discrete sequence PhaSp aRecon.m reconstruction phase space Lyapunov_rosenstein_2.dll Ly apunov calculation main function buffer_run1.dll calculated a cache buffer_ru n2.dll calculated Cache Cache two buffer_run3.dll calculation 3
Update : 2025-02-19 Size : 99kb Publisher : ming

DL : 0
lorenz吸引子的画法,及其动态movie的画法。-Lorenz attractor painting method, and its dynamic movie of the painting.
Update : 2025-02-19 Size : 2kb Publisher : 孙广会

DL : 1
 吸引到某个吸引子的点集叫该吸引子的吸引盆 吸引子:点在迭代的作用下得到的结构。一般可以用微分方程确立。例如:Lorenz吸引子-Attracted to the attractor of a point set is called the attractor basin of attraction of attractor: point in the role of iteration under the structure. Ordinary differential equations can be established. For example: Lorenz attractor
Update : 2025-02-19 Size : 1kb Publisher : julien716

附件中是我用Fortran写的lorenz混沌吸引子的lyapunov指数谱产生程序。包括三部分内容:如何产生lorenz吸引子,详细注释,如何计算lyapunov指数谱。 需要的话也可以单独提取子程序中的四阶龙格库塔算法。 希望有所用。-Annex is written in Fortran I used the Lorenz chaotic attractor of lyapunov index spectrum generation process. Includes three parts: how to generate Lorenz attractor, detailed notes, how to calculate the spectrum lyapunov index. If necessary, extraction can also be a separate subroutine in the fourth-order Runge-Kutta algorithm. Would like to see used.
Update : 2025-02-19 Size : 1kb Publisher : 辛培明

Lorenz吸引子的图形,希望大伙参考参考,并且已经在我的计算机上实现过的,放心使用。-Drawing by Lorenz attractor MATLAB graphics, I hope everyone refer to the reference, and has achieved my computer off, and ease of use
Update : 2025-02-19 Size : 20kb Publisher : 章荣

DL : 0
Compute a representation of the lorenz strange attractor
Update : 2025-02-19 Size : 2kb Publisher : mlaprise

该工具箱包括了混沌时间序列分析与预测的常用方法,有: 产生混沌时间序列(chaotic time series) Logistic映射 - \ChaosAttractors\Main_Logistic.m Henon映射 - \ChaosAttractors\Main_Henon.m Lorenz吸引子 - \ChaosAttractors\Main_Lorenz.m Duffing吸引子 - \ChaosAttractors\Main_Duffing.m Duffing2吸引子 - \ChaosAttractors\Main_Duffing2.m Rossler吸引子 - \ChaosAttractors\Main_Rossler.m Chens吸引子 - \ChaosAttractors\Main_Chens.m-The kit includes a chaotic time series analysis and prediction of commonly used methods are: generate chaotic time series (chaotic time series) Logistic map- \ ChaosAttractors \ Main_Logistic.m Henon map- \ ChaosAttractors \ Main_Henon.m Lorenz attractor- \ ChaosAttractors \ Main_Lorenz.m Duffing attractor- \ ChaosAttractors \ Main_Duffing.m Duffing2 attractor- \ ChaosAttractors \ Main_Duffing2.m Rossler attractor- \ ChaosAttractors \ Main_Rossler.m Chens attractor- \ ChaosAttractors \ Main_Chens.m
Update : 2025-02-19 Size : 5kb Publisher : 林涛

DL : 0
洛伦兹混沌多涡卷吸引子源代码,复杂程序,用于毕业设计-Multi-scroll chaotic Lorenz attractor source code, complex procedures for graduation
Update : 2025-02-19 Size : 1kb Publisher : zhy

DL : 0
lorenz系统分岔轨迹绘制,包含吸引子图,X,Y,Z相时间序列-lorenz draw bifurcation path, including the attractor graph, X, Y, Z-phase time-series
Update : 2025-02-19 Size : 1kb Publisher : 张智博

DL : 0
生成lorenz吸引子图像,对学习混沌加密的同学来说可以参考一下。-Generate lorenz attractor image to the study of chaotic encryption classmate speaking can consult.
Update : 2025-02-19 Size : 1kb Publisher : 温俊生

DL : 0
code for calculating the Lorenz attractor
Update : 2025-02-19 Size : 1kb Publisher : Serge

This program was created in Dev C++ (OpenGL). The Lorenz oscillator is a 3-dimensional dynamical system that exhibits chaotic flow, noted for its lemniscate shape. The map shows how the state of a dynamical system evolves over time in a complex, non-repeating pattern
Update : 2025-02-19 Size : 116kb Publisher : space21

DL : 0
this code will run Lorenz attractor. the function file is lorenz.m and the call file is lorenz1.m
Update : 2025-02-19 Size : 1kb Publisher : sanmu

DL : 0
洛伦兹吸引子的函数程序以及动态图形,matlab程序-Lorenz attractor function procedures and dynamic graphics, matlab program
Update : 2025-02-19 Size : 1kb Publisher : 王海峰

system nonliner Lorenz Attractor with ode45 -system nonliner Lorenz Attractor with ode45
Update : 2025-02-19 Size : 1kb Publisher : saber

Edward Lorenz 1963年在研究大气成分流动规律时发现下面微分方程组有非常奇异的现象,后被称为混沌现象(Edward Lorenz in 1963 studied the law of atmospheric composition flow, found that the following differential equations have very strange phenomenon, and later known as chaos phenomenon)
Update : 2025-02-19 Size : 248kb Publisher : souker

simulate lorenz attractor on matlab
Update : 2025-02-19 Size : 126kb Publisher : tykwytta

DL : 0
该Fortran代码是用龙格库塔法解Lorenz微分方程组,画出二维相图和三维相图。(The Lorenz system is a system of ordinary differential equations first studied by Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular, the Lorenz attractor is a set of chaotic solutions of the Lorenz system which, when plotted, resemble a butterfly or figure eight.)
Update : 2025-02-19 Size : 4.7mb Publisher : smallnetwork
« 12 3 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.