Welcome![Sign In][Sign Up]
Location:
Search - lotka matlab

Search list

[Algorithmfunction

Description: 我编写的Lotka解微分方程组的程序,可以解决方程组的微分数值计算,希望可以给大家起到借鉴作用-I prepared solution of differential equations Lotka procedures can solve the differential equations numerical calculation, I hope everyone can learn from the role played
Platform: | Size: 1024 | Author: join | Hits:

[AlgorithmFOChS

Description: matlab程序模拟微分方程。各种流行的系统显示混沌运动特征。-This toolbox contains the functions which can be used to simulate some of the well-known fractional order chaotic systems, such as: - Chen s system, - Arneodo s system, - Genesio-Tesi s system, - Lorenz s system, - Newton-Leipnik s system, - Rossler s system, - Lotka-Volterra system, - Duffing s system, - Van der Pol s oscillator, - Volta s system, - Lu s system, - Liu s system, - Chua s systems, - Financial system, - 3 cells CNN. The functions numerically compute a solution of the fractional nonlinear differential equations, which describe the chaotic system. Each function returns the state trajectory (attractor) for total simulation time.
Platform: | Size: 16384 | Author: HM | Hits:

[matlabdynamical_system_matlab

Description: oscil.m - matlab, this is file-function for modeling Lotka-Volterra dynamical system nezatSt.m - program for modeling-oscil.m - matlab, this is file-function for modeling Lotka-Volterra dynamical system nezatSt.m - program for modeling
Platform: | Size: 54272 | Author: ihor | Hits:

[mathematicaordinary-differential-equation

Description: 本次课程设计中,主要讨论了常微分方程的初值问题数值解法。文章主要分3大块,分别是:1.简单介绍几种常微分方程的初值问题数值解的求法,给出其算法流程图和相应matlab程序。2.通过运用典型的数值解法如Eulor方法,改进Eulor方法,Runge-Kutta方法求解具体常微分方程并分析对比方法收敛阶、稳定性。3.进一步去用以上三种方法求解Lotka-Volterra方程,分析食饵与捕食者模型,得出相关结论。-The curriculum design, focused on the numerical solution of initial value problem of ordinary differential equations. This article mainly divided into three large pieces, namely: 1. brief introduction of several ordinary differential equation initial value problem of numerical solution method for finding, given its flow chart and the corresponding algorithm matlab program. 2. The method Eulor improve Eulor method, Runge-Kutta method to solve through the use of typical numerical solution of ordinary differential equations and specific analysis and comparison Convergence order and stability. 3. Further to the above three methods used to solve the Lotka-Volterra equations of prey and predator model, draw relevant conclusions.
Platform: | Size: 606208 | Author: | Hits:

CodeBus www.codebus.net