Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - mahalanobis classifier
Search - mahalanobis classifier - List
一种新的计算马氏距离的算法,算法采用二次协方差矩阵操作,进而使距离考加入相对性因素。-a new Mahalanobis distance calculation algorithm, the algorithm using quadratic covariance matrix operations, thereby enabling the relative distance to take factors.
Update : 2025-04-04 Size : 1kb Publisher : bodiz2002

DL : 0
Mahalanobis Distance Function for Matlab.
Update : 2025-04-04 Size : 1kb Publisher : Igor

DL : 0
模式识别作业,贝叶斯分类,欧式距离马氏距离-Pattern recognition operation, the Bayesian classifier, the Euclidean distance, Mahalanobis distance
Update : 2025-04-04 Size : 1kb Publisher : 毕浩洋

DL : 0
The Mahalanobis Distance Classifier If one relaxes the assumptions required by the Euclidean classifier and removes the last one, the one requiring the covariance matrix to be diagonal and with equal elements, the optimal Bayesian classifier becomes equivalent to the minimum Mahalanobis distance classifier. That is, given an unknown x, it is assigned to class ωi if
Update : 2025-04-04 Size : 43kb Publisher : nehad

基于马氏分类器的阿兹海默氏症分类器,课程练习-Based on Mahalanobis classifier classifier of Alzheimer' s disease
Update : 2025-04-04 Size : 43kb Publisher : Zifan Zhang

马氏距离是一种有效地计算两个样本集之间相似度的算法(数据之间协方差距离),与欧式距离相比,它考虑了各种特征之间的联系。本实验旨在通过给出的样本数据,设计一个最小马氏距离分类器并对测试点进行分类,然后将其与最小欧式距离分类器进行比较,实验得出当协方差矩阵为单位阵时,最小马氏距离分类器将与最小欧式距离分类器等价。-Markov distance is an effective method to compute the similarity between the two samples (data covariance distance), compared with the Euclidean distance, which takes into account the link between different characteristics. This experiment aimed at through the given sample data, design a minimum Mahalanobis distance classifier and classify the test points, and then compare it with the minimum Euclidean distance classifier. Experimental results showed that when the covariance matrix is a unit matrix, minimum Mahalanobis distance classifier with the minimum Euclidean distance classifier equivalent.
Update : 2025-04-04 Size : 2kb Publisher : Jam_Jack

Mahalanobis classifier
Update : 2025-04-04 Size : 1kb Publisher : aaymysz

模式分类之最小马氏距离分类器设计,对给出样本点进行分类处理-Minimum Mahalanobis distance classifier design pattern classification, the sample points are given for classification
Update : 2025-04-04 Size : 1kb Publisher : fuguanghui

DL : 0
z=mahalanobis_classifier(m,S,X).This function outputs the Mahalanobis classifier, given the mean and covariance matrices. • M: the number of classes. • l: the number of features (for each feature vector). • N: the number of data vectors. • m: lxM matrix, whose j-th column corresponds to the mean of the j-th class. • S: lxlxM matrix. S(:,:,j) is the covariance matrix of the j-th normal distribution. • P: M-dimensional vector whose j-th component is the a priori probability of the j-th class. • X: lxM data matrix, whose rows are the feature vectors, i.e., data matrix in scikit-learn convention. • y: N-dimensional vector containing the known class labels, i.e., the ground truth, or target vector in scikit-learn convention. • z: N-dimensional vector containing the predicted class labels, i.e., the vector of predicted class labels in scikit-learn convention.-z=mahalanobis_classifier(m,S,X).This function outputs the Mahalanobis classifier, given the mean and covariance matrices. • M: the number of classes. • l: the number of features (for each feature vector). • N: the number of data vectors. • m: lxM matrix, whose j-th column corresponds to the mean of the j-th class. • S: lxlxM matrix. S(:,:,j) is the covariance matrix of the j-th normal distribution. • P: M-dimensional vector whose j-th component is the a priori probability of the j-th class. • X: lxM data matrix, whose rows are the feature vectors, i.e., data matrix in scikit-learn convention. • y: N-dimensional vector containing the known class labels, i.e., the ground truth, or target vector in scikit-learn convention. • z: N-dimensional vector containing the predicted class labels, i.e., the vector of predicted class labels in scikit-learn convention.
Update : 2025-04-04 Size : 1kb Publisher : mnzars
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.