Welcome![Sign In][Sign Up]
Location:
Search - matlab Matr

Search list

[Othermatrix

Description: Matlab系列。矩阵计算各类算法比较分析。-Matlab series. Matrix comparative analysis of the various algorithms.
Platform: | Size: 363520 | Author: 夏泽洋 | Hits:

[matlabMatlab_matrix

Description: 关于matlab矩阵操作的初级教程,对新生很有用。建议大家看看!-Matlab matrix operation on the primary curriculum for freshmen useful. Recommendations to see everyone!
Platform: | Size: 191488 | Author: feiyang | Hits:

[Otherdoub

Description: Matlab code for the solution to Riccati matrix difference equations associated with the Kalman filter
Platform: | Size: 1024 | Author: | Hits:

[Special Effectslm-matlab

Description:
Platform: | Size: 13312 | Author: 张治国 | Hits:

[matlabget_clustering_coefficient

Description: 通过邻接矩阵,计算网络的聚类系数。聚类系数是复杂网络中一个重要参量。 -Through the adjacency matrix, computing networks, clustering coefficient. Clustering coefficient is a complex network, an important parameter.
Platform: | Size: 1024 | Author: tigercan | Hits:

[Othercirculant

Description: This MATLAB code generates a square circulant matrix using the vector V as the first row of the result if V is a row vector or as the first column of the result if V is a column vector. V may be any numeric data type or a character string. -This MATLAB code generates a square circulant matrix using the vector V as the first row of the result if V is a row vector or as the first column of the result if V is a column vector. V may be any numeric data type or a character string.
Platform: | Size: 3072 | Author: Mohammed | Hits:

[AI-NN-PRAdaptive-Embedding-Dimension

Description: 嵌入维数自适应最小二乘支持向量机 状态时间序列预测方法 Condition Time Series Prediction Using Least Squares Support Vector Machine with Adaptive Embedding Dimension 针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题, 提出一种基于嵌入维数自适应 最小二乘支持向量机( L SSVM ) 的预测方法。该方法将嵌入维数作为影响状态时间序列预测精度的重要参 数, 以交叉验证误差为评价准则, 利用粒子群优化( P SO ) 进化搜索LSSV M 预测模型的最优超参数与嵌入维 数, 同时通过矩阵变换原理提高交叉验证过程的计算效率, 并最终建立优化后的L SSVM 预测模型。航空发 动机排气温度( EGT ) 预测实例表明, 该方法可自适应选取适用于状态时间序列预测的最优嵌入维数且预测 精度高, 适用于航空发动机状态时间序列预测。- T o deal wit h the difficulty of selecting an appro pr iate embedding dimension for aeroeng ine co ndition time series predictio n, a metho d based o n least squar es suppo rt vecto r machine ( L SSVM ) with ada ptive em bedding dimension is pro po sed. I n the method, the embedding dimensio n is identified as a parameter that af fects the accuracy o f the aer oengine condition time series predictio n par ticle sw arm o ptimizat ion ( P SO) is ap plied to optimize the hyperpar ameter s and embedding dimension of the L SSV M pr edict ion model cro ssv alida tion is applied to evaluate the perfo rmance o f the L SSVM predictio n mo del and matr ix tr ansfo rm is applied to the L SSVM pr ediction model tr aining to accelerate the crossvalidation evaluation pro cess. Ex periments on an aeroengine ex haust g as t emperatur e ( EGT ) predictio n demonst rates that the metho d is hig hly effective in em bedding dimension selection. In compar ison w ith co nv
Platform: | Size: 342016 | Author: | Hits:

CodeBus www.codebus.net