Welcome![Sign In][Sign Up]
Location:
Search - matrix rank Gauss Jordan

Search list

[AlgorithmMatrix

Description: 关于求矩阵秩的程序,用高斯—约当消元法实现-On the procedure for matrix rank, using Gauss- Jordan elimination method to achieve
Platform: | Size: 234496 | Author: 王平 | Hits:

[Algorithmgaosixiaoyuanfa

Description: 高斯消去法是求解线性方程组的基础的重要方法,也是计算机上常用的解低阶稠密矩阵方程组的有效方法。,高斯消去法或称高斯-约当消去法,由高斯和约当得名(很多人将高斯消去作为完整的高斯-约当消去的前半部分),它是线性代数中的一个算法,用于决定线性方程组的解,决定矩阵的秩,以及决定可逆方矩阵的逆。当用于一个矩阵时,高斯消去产生“行消去梯形形式”。-Gaussian elimination is the basis for solving linear equations important way, the solution is low-end computer used dense matrix equations in an effective manner. , Gaussian elimination, or Gauss- Jordan elimination, the Gauss and about when the name (many people will be as complete Gaussian elimination Gauss- Jordan elimination in the first half), which is linear algebra an algorithm used to determine the solution of linear equations to determine the rank of matrix, and to determine the inverse of invertible square matrix. When used with a matrix, Gaussian elimination lead to " eliminate the ladder-line form."
Platform: | Size: 7168 | Author: 天云 | Hits:

[Algorithmmatrix

Description: 此包包含了众多矩阵处理程序,能够满足矩阵处理的一般要求,由于将各功能分开到不同的“.cpp”文件中,故使用时需要用户自行选取更换合适自己使用的“.cpp”文件。其中,矩阵功能有:输出矩阵、矩阵转置、矩阵归一化、判断矩阵对称、判断矩阵对称正定、全选主元法求矩阵行列式、全选主元高斯(Gauss)消去法求一般矩阵的秩、用全选主元高斯-约当(Gauss-Jordan)消去法计算实(复)矩阵的逆矩阵、用“变量循环重新编号法”法求对称正定矩阵逆、特兰持(Trench)法求托伯利兹(Toeplitz)矩阵逆、实矩阵LU分解、用豪斯荷尔德(Householder)变换对一般m*n阶的实矩阵进行QR分解、对称正定阵的乔里斯基(Cholesky)分解及求其行列式值、一般实矩阵的奇异值分解、广义逆的奇异值分解。-This package contains a number of matrix processing, matrix processing to meet the general requirements, due to the separation of functions to different ". Cpp" file, so the need to use their own user-selected replacement suitable to use ". Cpp" files. Among them, the matrix function: output matrix, the matrix transpose, matrix normalized to determine the matrix symmetric, symmetric positive definite matrix to determine the whole pivoting method for the matrix determinant, full pivoting Gauss (Gauss) elimination method for the general matrix of rank, with full pivoting Gauss- Jordan (Gauss-Jordan) elimination method to calculate the real (complex) inverse of a matrix, with a "variable cycle re-number method" method for the symmetric positive definite matrix inverse, Portland hold (Trench) method for the Tuobo Leeds (Toeplitz) matrix inverse real matrix LU factorization, with high Siheerde (Householder) transformations of the general order of m* n matrix QR decomposition of real symmetr
Platform: | Size: 1077248 | Author: wuzw | Hits:

CodeBus www.codebus.net