Welcome![Sign In][Sign Up]
Location:
Search - maximum a priori

Search list

[OpenGL programMAP

Description: Maximum a priori L-values
Platform: | Size: 1024 | Author: Imran | Hits:

[matlabML

Description: 该算法是经典的信噪比估计算法——最大似然估计算法,利用接收信道的先验概率密度函数,ML法能够很好的估计信号的信噪比-The algorithm is a classic signal to noise ratio estimation algorithm- maximum likelihood estimation algorithm, using the a priori receiver channel probability density function, ML method can be a very good signal to noise ratio is estimated
Platform: | Size: 1024 | Author: 贾小勇 | Hits:

[matlabMinimum-Risk-Bayes-classifier

Description: 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。 -This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Bayesian classifier
Platform: | Size: 4096 | Author: 崔杉 | Hits:

[OthermyBayes

Description: 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类-Bayesian classifier principle a priori probability of the object using the Bayesian formula to calculate the subsequent posterior probability that the object belongs to a certain class of probability, select the class with the maximum a posteriori as the object belongs to class
Platform: | Size: 1024 | Author: 冰点 | Hits:

[matlabsbzddavf

Description: isodata 迭代自组织的数据分析,线性调频脉冲压缩的Matlab程序,进行波形数据分析,从先验概率中采样,计算权重,最大似然(ML)准则和最大后验概率(MAP)准则,鲁棒性好,性能优越。-Isodata iterative self-organizing data analysis, LFM pulse compression of the Matlab program, Waveform data analysis, Sampling a priori probability, calculate the weight, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, Robustness, superior performance.
Platform: | Size: 7168 | Author: izzxhq | Hits:

[matlabbgevuwcs

Description: 基于人工神经网络的常用数字信号调制,双向PCS控制仿真,自己编的5种调制信号,从先验概率中采样,计算权重,最大似然(ML)准则和最大后验概率(MAP)准则。-The commonly used digital signal modulation based on artificial neural network, Two-way PCS control simulation, Own five modulation signal, Sampling a priori probability, calculate the weight, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion.
Platform: | Size: 9216 | Author: xkfppcgx | Hits:

[matlabjpysgdhz

Description: 从先验概率中采样,计算权重,基于欧几里得距离的聚类分析,使用混沌与分形分析的例程,基于负熵最大的独立分量分析,关于小波的matlab复合分析,最大似然(ML)准则和最大后验概率(MAP)准则。- Sampling a priori probability, calculate the weight, Clustering analysis based on Euclidean distance, Use Chaos and fractal analysis routines, Based on negative entropy largest independent component analysis, Matlab wavelet analysis on complex, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion.
Platform: | Size: 8192 | Author: dfabzatmq | Hits:

[matlabbrzrvydu

Description: 光纤陀螺输出误差的allan方差分析,对于初学者具有参考意义,基于分段非线性权重值的Pso算法,从先验概率中采样,计算权重,最大似然(ML)准则和最大后验概率(MAP)准则,关于神经网络控制。- allan FOG output error variance analysis, For beginners with a reference value, Based on piecewise nonlinear weight value Pso algorithm, Sampling a priori probability, calculate the weight, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, On neural network control.
Platform: | Size: 9216 | Author: jhvsrgrm | Hits:

[matlabdwjmftzd

Description: 预报误差法参数辨识-松弛的思想,匹配追踪和正交匹配追踪,从先验概率中采样,计算权重,最大似然(ML)准则和最大后验概率(MAP)准则,采用的是脉冲对消法,数学方法是部分子空间法。- Prediction Error Method for Parameter Identification- the idea of relaxation, Matching Pursuit and orthogonal matching pursuit, Sampling a priori probability, calculate the weight, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, It uses a pulse of consumer law, Mathematics is part of the subspace.
Platform: | Size: 6144 | Author: yqbbj | Hits:

[matlabpsdegtqu

Description: 重要参数的提取,从先验概率中采样,计算权重,最大似然(ML)准则和最大后验概率(MAP)准则,基于matlab GUI界面设计,是机器学习的例程,双向PCS控制仿真,Relief计算分类权重。- Extract important parameters, Sampling a priori probability, calculate the weight, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, Based on matlab GUI interface design, Machine learning routines, Two-way PCS control simulation, Relief computing classification weight.
Platform: | Size: 8192 | Author: yryeazuqc | Hits:

[matlabyttfgjhd

Description: 分析了该信号的时域、频域、倒谱,循环谱等,采用累计贡献率的方法,最大似然(ML)准则和最大后验概率(MAP)准则,双向PCS控制仿真,信号维数的估计,在matlab R2009b调试通过,从先验概率中采样,计算权重。- Analysis of the signal time domain, frequency domain, cepstrum, cyclic spectrum, etc. The method of cumulative contribution rate Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, Two-way PCS control simulation, Signal dimension estimates, In matlab R2009b debugging through, Sampling a priori probability, calculate the weight.
Platform: | Size: 7168 | Author: ddsnaph | Hits:

[AI-NN-PRDesktop

Description: 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类-Bayesian classifier classification principle is a priori probability of an object by using the Bayesian formula to calculate the probability of subsequent experience, that is, the probability that the object belongs to a certain category, the class having the maximum a posteriori probability as the object class belongs
Platform: | Size: 1024 | Author: 问建丽 | Hits:

[matlabhkx_v79

Description: 独立成分分析算法降低原始数据噪声,处理信号的时频分析,基于chebyshev的水声信号分析,仿真效果非常好,从先验概率中采样,计算权重,基于matlab GUI界面设计,最大似然(ML)准则和最大后验概率(MAP)准则。- Independent component analysis algorithm reduces the raw data noise, When processing a signal frequency analysis, Based chebyshev underwater acoustic signal analysis, Simulation of the effect is very good, Sampling a priori probability, calculate the weight, Based on matlab GUI interface design, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion.
Platform: | Size: 8192 | Author: nktbemkd | Hits:

[Special EffectsGPM-

Description: 一种新颖的退化图像复原算法。结合最大差值先验假设和最大局部对比度先验假设,快速有效的得到退化图像的深度转换估计图。结合软抠图法和shades of the gray算法实现图像去雾和水下图像处理。-A novel degraded image restoration algorithm. Combined with maximum difference between a priori assumptions and maximum local contrast priori hypotheses, quickly and efficiently get degraded image depth conversion estimates Chart. Combined with soft matting law and shades of the gray image algorithm to image processing and underwater fog
Platform: | Size: 542720 | Author: 王金斌 | Hits:

[Otherkui_fj16

Description: 经典的灰度共生矩阵纹理计算方法,最大似然(ML)准则和最大后验概率(MAP)准则,从先验概率中采样,计算权重。- Classic GLCM texture calculation method, Maximum Likelihood (ML) criteria and maximum a posteriori (MAP) criterion, Sampling a priori probability, calculate the weight.
Platform: | Size: 8192 | Author: mvtsdkmi | Hits:

[Otherbayes

Description: 贝叶斯分类器,通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。-Bias classifier, by a priori probability of an object, using the Bias formula to calculate the posterior probability, the probability that the object belongs to a certain category, with maximum posterior probability as the objects belonging to the class.
Platform: | Size: 7247872 | Author: Christiana | Hits:

CodeBus www.codebus.net