Welcome![Sign In][Sign Up]
Location:
Search - maximum likelihood classifier

Search list

[Other resourcesequential_forward_selection

Description: 自己编的matlab程序。用于模式识别中特征的提取。是特征提取中的Sequential Forward Selection方法,简称sfs.它可以结合Maximum-Likelihood-Classifier分类器进行使用。
Platform: | Size: 1040 | Author: limingxian | Hits:

[Other resourceevents

Description: * acousticfeatures.m: Matlab script to generate training and testing files from event timeseries. * afm_mlpatterngen.m: Matlab script to extract feature information from acoustic event timeseries. * extractevents.m: Matlab script to extract event timeseries using the complete run timeseries and the ground truth/label information. * extractfeatures.m: Matlab script to extract feature information from all acoustic and seismic event timeseries for a given run and set of nodes. * sfm_mlpatterngen.m: Matlab script to extract feature information from esmic event timeseries. * ml_train1.m: Matlab script implementation of the Maximum Likelihood Training Module. ?ml_test1.m: Matlab script implementation of the Maximum Likelihood Testing Module. ?knn.m: Matlab script implementation of the k-Nearest Neighbor Classifier Module.
Platform: | Size: 10081 | Author: 陈延军 | Hits:

[matlabsequential_forward_selection

Description: 自己编的matlab程序。用于模式识别中特征的提取。是特征提取中的Sequential Forward Selection方法,简称sfs.它可以结合Maximum-Likelihood-Classifier分类器进行使用。-The matlab own procedures. For Pattern Recognition Feature Extraction. Feature Extraction is the Sequential Forward Selection method, referred to as sfs. It can be combined with Maximum-Likelihood-Classifier classifier used.
Platform: | Size: 1024 | Author: limingxian | Hits:

[Other systemsevents

Description: * acousticfeatures.m: Matlab script to generate training and testing files from event timeseries. * afm_mlpatterngen.m: Matlab script to extract feature information from acoustic event timeseries. * extractevents.m: Matlab script to extract event timeseries using the complete run timeseries and the ground truth/label information. * extractfeatures.m: Matlab script to extract feature information from all acoustic and seismic event timeseries for a given run and set of nodes. * sfm_mlpatterngen.m: Matlab script to extract feature information from esmic event timeseries. * ml_train1.m: Matlab script implementation of the Maximum Likelihood Training Module. ?ml_test1.m: Matlab script implementation of the Maximum Likelihood Testing Module. ?knn.m: Matlab script implementation of the k-Nearest Neighbor Classifier Module.
Platform: | Size: 10240 | Author: 陈延军 | Hits:

[matlabbeiyesi

Description: 1 通过实验,掌握多元正态分布的最大似然估计; 2 掌握多元正态分布下的最小错误率的贝叶斯分类; 3 对其他的参数估计有更深的认识。 -1 experiment, master multivariate normal distribution maximum likelihood estimation 2 multivariate normal distribution under the minimum control error rate Bayesian classifier 3 on the other have a better understanding of parameter estimation.
Platform: | Size: 62464 | Author: 李岩 | Hits:

[AI-NN-PRbayes-classsifier

Description: 该程序源码中包括了各种典型分布的二维数据的自动生成,二维概率密度函数的极大似然估计和窗函数估计,bayes分类器的设计和分类器错误率的多种方法估计-The program includes a variety of typical source distribution of the automatic generation of two-dimensional data, two-dimensional probability density function of the maximum likelihood estimation and window function estimation, bayes classifier design and classifier error rate estimated a variety of ways
Platform: | Size: 9216 | Author: 聂雨桐 | Hits:

[matlabtest

Description: function mean = ml_mean(data) Calculate the maximum likelihood estimation of the mean Written by Christiaan M. van der Walt Meraka Institute More resources available at http://www.patternrecognition.co.za Reference: C.M. van der Walt and E. Barnard,“Data characteristics that determine classifier perfromance”, in Proceedings of the Sixteenth Annual Symposium of the Pattern Recognition Association of South Africa, pp.160-165, 2006. Available [Online] http://www.patternrecognition.co.za-function mean = ml_mean(data) Calculate the maximum likelihood estimation of the mean Written by Christiaan M. van der Walt Meraka Institute More resources available at http://www.patternrecognition.co.za Reference: C.M. van der Walt and E. Barnard,“Data characteristics that determine classifier perfromance”, in Proceedings of the Sixteenth Annual Symposium of the Pattern Recognition Association of South Africa, pp.160-165, 2006. Available [Online] http://www.patternrecognition.co.za
Platform: | Size: 35840 | Author: Ayike Simsek | Hits:

[matlabMinimum-Bayes-classifier-error-rate

Description: 这是模式识别中最小错误率Bayes分类器设计方案。 自行完善了在不同先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小错误率贝叶斯分类器决策子函数时,根据先验概率数组,通过比较概率大小判断一个体重身高二维向量代表的人是男是女。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小错误率贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到不同先验概率条件下错误率的统计。 -This is the minimum error rate pattern recognition Bayes classifier design. Self- improvement prior probability in different conditions , male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector third step is to application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Call the minimum error rate decision Functions Bayesian
Platform: | Size: 4096 | Author: 崔杉 | Hits:

[matlabMinimum-Risk-Bayes-classifier

Description: 这是模式识别中最小风险Bayes分类器的设计方案。在参考例程的情况下,自行完善了在一定先验概率的条件下,男、女错误率和总错误率的统计,放入各个数组当中。 全部程序由主函数、最大似然估计求取概率密度子函数、最小错误率贝叶斯分类器决策子函数三块组成。 调用最大似然估计求取概率密度子函数时,第一步获取样本数据,存储为矩阵;第二步对矩阵的每一行求和,并除以样本总数N,得到平均值向量;第三步是应用公式(3-43)采用矩阵运算和循环控制语句,求得协方差矩阵;第四步通过协方差矩阵求得方差和相关系数,从而得到概率密度函数。 调用最小风险贝叶斯分类器决策子函数时,根据先验概率,再根据自行给出的5*5的决策表,通过比较概率大小判断一个体重身高二维向量代表的人是男是女,放入决策数组中。 主函数第一步打开“MAIL.TXT”和“FEMALE.TXT”文件,并调用最大似然估计求取概率密度子函数,对分类器进行训练。第二步打开“test2.txt”,调用最小风险贝叶斯分类器决策子函数,然后再将数组中逐一与已知性别的数据比较,就可以得到在一定先验概率条件下,决策表中不同决策的错误率的统计。 -This is a pattern recognition classifier minimum risk Bayes design .In reference to the case of routine , self- improvement in a certain a priori probability conditions, male , female and total error rate error rate statistics , into which each array . All programs from the main function , maximum likelihood estimation subroutine strike probability density , the minimum error rate Bayesian classifier composed of decision-making three subfunctions . Strike called maximum likelihood estimate probability density subroutine , the first step to obtain the sample data , stored as a matrix the second step of the matrix, each row sum , and divided by the total number of samples N, be the average vector The third step is the application of the formula ( 3-43 ) using matrix and loop control statements , obtain the covariance matrix fourth step through the variance-covariance matrix and correlation coefficient obtained , resulting in the probability density function . Bayesian classifier
Platform: | Size: 4096 | Author: 崔杉 | Hits:

[OtherML.m

Description: 在贝叶斯分类中,用极大似然估计法估计概率分布的均值和方差-Compute the maximum-likelihood estimate of the mean and covariance matrix of each class and then uses the results to construct the Bayes decision region. This classifier works well if the classes are uni-modal, even when they are not linearly seperable.
Platform: | Size: 1024 | Author: Eric chen | Hits:

[AI-NN-PRQ1

Description: 2类分类高斯模型 每个类是由一个单一的多元高斯分布的3-D建模 显示如何估计高斯均值向量和协方差矩阵的最大似然(ML)估计的基础上为每个类。   meanA和meanB代表每个类的均值,varA和varB的的代表每个类的协方差矩阵.-2-class classifier with Gaussian Models Each class is modelled by a single 3-D multivariate Gaussian distribution Show how to estimate Gaussian mean vector and covariance matrix for each class based on the Maximum likelihood (ML) estimation. meanA and meanB represent each class s mean vector respectively while varA and varB represent each class s convariance matrix respectively
Platform: | Size: 1024 | Author: 王沛霖 | Hits:

[matlabMLE_Classifier

Description: 用最大似然估计训练分类器,用Train.txt里的数据进行训练,用Test.txt的数据进行性能检测-Use the maximum likelihood estimation training classifier, use the data in Train.txt to train the classifier and use the data in Test.txt to test the performance of the classifier
Platform: | Size: 26624 | Author: 王国坤 | Hits:

[Graph Drawingbeiyesifenlei

Description: 针对两类样本所设计的贝叶斯分类器,包括已知参数和未知参数,当参数未知时,用最大似然法进行参数估计-Bias classifier is designed for two kinds of samples, including known and unknown parameters, when the parameters are unknown, the maximum likelihood method is used to estimate the parameters.
Platform: | Size: 2048 | Author: 冯晨 | Hits:

CodeBus www.codebus.net