Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - method simplex c
Search - method simplex c - List
对偶单纯形法求线性规划最优解-dual simplex method for solving linear programming problems.
Update : 2025-02-17 Size : 2kb Publisher :

用c++实现的线性规划的单纯形法-use linear programming to achieve the Simplex Method
Update : 2025-02-17 Size : 3kb Publisher :

单纯形法c++编程,以解决运筹学中线性规划问题,程序简单明了,对于初学者来说是一个很不错的选择-Simplex Method c programming, operations research to solve linear programming problems, procedures simple and clear, for a newcomer is a very bad choice
Update : 2025-02-17 Size : 1kb Publisher : 涂宝标

用C++编的一些最优化作业中的程序,有Newton法,DFP法,共轭梯度法,单纯形法,内点法,外点法,内外点法,都能使用,我已经全部调试过了-C compile some of the most optimized operating procedures, Newton, DFP, conjugate gradient method, the simplex method, interior point method, the points outside the law, outside point method can use, I have all over Debugging
Update : 2025-02-17 Size : 12kb Publisher : tw

运筹学单纯形法解线性规划问题c语言源程序。-tacticians simplex method for solving linear programming problems c source language.
Update : 2025-02-17 Size : 4kb Publisher : 孙尽心

/*用单纯形算法求解多元函数极值计算机程序代码*/ /************************ *试用单纯形法求目标函数: *f(x)= 4(x1 -5)*(x1 -5) + (x2 -6)*(x1 -5) *的极小值 *************************/-/* Use simplex algorithm for multi-function extremum computer code*//************************* trial simplex method for the objective function :* f (x) = 4 (5 x1)* (x1 5) (6 x2)* (x1-5)* minimums*************************/
Update : 2025-02-17 Size : 168kb Publisher : 刘向

线性约束方程组,单纯形人工变量法(用类写的)用文件输入输出的-linear constraint equations, artificial variable simplex method (using writing category) with the input and output documents
Update : 2025-02-17 Size : 260kb Publisher : mathstony

用C++实现的运筹学中的单纯形法问题,请批评指正。-C realized tacticians of the simplex method, please correct me criticism.
Update : 2025-02-17 Size : 4kb Publisher :

单纯形解决线形规划问题的C程序代码(c)-Simplex to solve linear programming problems of C program code (c)
Update : 2025-02-17 Size : 2kb Publisher : huanghubang

DL : 0
用单纯性法求解线性规划问题,并通过控制台输入系数矩阵。-Using simple method for solving linear programming problems, and through the console input coefficient matrix.
Update : 2025-02-17 Size : 3kb Publisher : 唐俊峰

DL : 0
这是运筹学中关于单纯形算法的c程序,可以运行,而且也比较易懂-simplex method
Update : 2025-02-17 Size : 1kb Publisher : linda

优化设计常用程序,用C++编的一些最优化作业中的程序,有Newton法,DFP法,共轭梯度法,单纯形法,内点法,外点法,内外点法,都能使用。-Commonly used to optimize the design process, using C++ for some of the most optimized operating procedures, the Newton method, DFP method, conjugate gradient method, simplex method, interior point method, outside the point of law, both inside and outside the point of law, can be used.
Update : 2025-02-17 Size : 10kb Publisher : lijiale

DL : 0
单纯形法C++代码 供大家相互学习交流-Simplex method, C++ code for all to learn from each other
Update : 2025-02-17 Size : 150kb Publisher : 周国旗

DL : 0
用C写的求解线性规划问题,即在一组线性不等式或等式组的约束条件下求某个线性函数的最值问题.-using simplex method to solve the linear program
Update : 2025-02-17 Size : 1kb Publisher : ivy

DL : 0
包含了许多的最优化算法,有牛顿法,单纯形法等,都已运行通过了-Contains a number of optimization algorithms, there is Newton' s method, simplex method, etc., have to run through the
Update : 2025-02-17 Size : 5kb Publisher : hanxuan

DL : 0
非常好的两阶段单纯形法的C语言程序 已调试过 -Very good two-phase simplex method, C-language program has been debugged
Update : 2025-02-17 Size : 1kb Publisher : 黄晶

Simplex method for C works for any input
Update : 2025-02-17 Size : 2kb Publisher : kikumarukike

用C++编写的单纯性算法小程序,实现线性规划。-Simple algorithm a small program written in C++ linear programming.
Update : 2025-02-17 Size : 121kb Publisher : zhanghc09

用于线性约束规划的单纯形法,通过C程序编写,调试运行通过,注释完备。-For linear constraint programming simplex method, by C programming, debugging and running through the complete comment.
Update : 2025-02-17 Size : 1kb Publisher : wang

两阶段法单纯形,非常好的两阶段单纯形法的C语言程序 已调试过(Two-stage method simplex Very good two-phase simplex C program has been debugged)
Update : 2025-02-17 Size : 3kb Publisher : jaq
« 12 3 4 5 6 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.