Description: 我的毕业论文及调研报告:《大模数的Rabin密码保密通信软件》
本文对Rabin密码保密通信软件进行了研究。简单介绍了信息安全技术现状及研究意义,讨论了公钥密码系统和Rabin密码系统及其涉及到的算法,包括大整数的实现、蒙格马利快速幂模运算、Miller-Rabin素性检测法、扩展的欧几里德算法。着重讨论了Rabin密码系统的方案设计以及Winsock通信技术。最后讲解了Rabin密码系统在保密通信中的应用,初步完成了大模数Rabin密码保密通信软件的设计。-My thesis and research report: Great modulus Rabin password secure communication software In this paper, Rabin password confidential communication software were studied. A brief introduction of the information security technology and research significance of the status quo, to discuss public-key cryptosystem and Rabin cryptosystem and involved in the algorithm, including the realization of large integers, Montgomery rapid computing power mode, Miller-Rabin primality test, Extended Euclidean algorithm. Focused on the Rabin cryptosystem Winsock program design and communication technologies. Finally on the Rabin cryptosystem secure communication applications, the initial completion of a large modulus Rabin password confidential communication software design. Platform: |
Size: 883712 |
Author:周金月 |
Hits:
Description: 个人编的rsa的源代码,算出public—private key;其中有Euclid,Extend Euclid的实现,以及Millar-Rabin test的实现,和加密/解密-Rsa personal series of source code, calculate the public-private key including Euclid, Extend Euclid realization, as well as the Millar-Rabin test realization, and the encryption/decryption Platform: |
Size: 2048 |
Author:lengyan119 |
Hits:
Description: 这是个很容易且广泛使用的简单算法,它基于Gary Miller的部分象法,有Michael Rabin发展。事实上,这是在NIST的DSS建议中推荐的算法的一个简化版。
首先选择一个代测的随机数p,计算b,b是2整除p-1的次数。然后计算m,使得n=1+(2^b)m。-This is a very easy and simple and widely used algorithm, which is based on some of Gary Miller as the law, there is the development of Michael Rabin. In fact, it is recommended in the NIST' s DSS recommended a simplified version of the algorithm. First of all, choose a random number generation test of p, calculated b, b is divisible by 2, the number of p-1. Calculation of m, making n = 1+ (2 ^ b) m. Platform: |
Size: 232448 |
Author:Xu Enliang |
Hits:
Description: 求离散对数的shanks算法,要求如下:
实现计算 Zp 中计算离散对数的 Shanks 算法,基本要求如下:
1)p 是一个小素数( 小于 32 bit ),a 是一个本原元。程序的输入为(p, a, b), 输出为 logab ( mod p) (可以用 log3525 (mod 809)等作为测试);
2)采用快速模指数算法求幂(如am),采用扩展欧几里得算法求逆( 如a-i (mod p) );
3)采用一种好的排序算法对 L1、L2 排序;
4)采用概率算法(如Miller Rabin算法)自动生成素数 p,采用本原元的充要条件自动生成 a;-Discrete number of shanks on demand algorithm, the following: calculation of Zp calculated to achieve the discrete logarithm Shanks algorithm, the basic requirements are as follows: 1) p is a small prime number (less than 32 bit), a is a primitive element. Process input (p, a, b), output logab (mod p) (can use log3525 (mod 809) so as a test) 2) The fast mode index algorithm to solve the power (such as the am), using extended Euclidean Reed inverse algorithm (such as ai (mod p)) 3) use a good sorting algorithm on the L1, L2 sort 4) using probabilistic algorithms (such as the Miller Rabin algorithm) automatically primes p, using primitive element automatically generate the necessary and sufficient conditions a Platform: |
Size: 7559168 |
Author:vince |
Hits:
Description: Miller Rabin:Just like the Fermat and Solovay–Strassen tests, the Miller–Rabin test relies on an equality or set of equalities that hold true for prime values, then checks whether or not they hold for a number that we want to test for primality. Platform: |
Size: 2048 |
Author:deitel10 |
Hits:
Description: 素数测试 miller rabin 提高算法 随机版 算法导论Introduction of Algorithms-Primes test of Miller_Rabin Algorithm
Introduction of Algorithms Platform: |
Size: 1024 |
Author:cyztuo |
Hits:
Description: 1. 经典的算法实现 2. 服务器端 3. 正确,易于使用和改造, 一个头文件一个算法,并附带一个demo.
1. 一个算法用一个.h文件表示放到include下.2. 算法演示的demo程序放到src下.3. 程序正确通过后,请发起Pull Requests,代码被验证后入库,并在README中发布新算法实现。
已实现 ( Implemented ):
Array shuffle
Prime test(trial division)
Prime test(Miller-Rabin s method)
2D Array
Arbitary Integer
Linear congruential generator
Maximum subarray problem
Bit-Set
Queue
Stack
Binary Heap
Fibonacci Heap
Priority Queue (list based)
Bubble sort
Selection sort
Insertion sort
Radix sort
Quick sort
Merge sort
Heap sort
Double linked list
Skip list
Self-organized linked-list ops (move-to-front, move-ahead-one)
Largest common sequence
Binary search tree
Dynamic order statistics
Red-black tree
Interval tree
Prefix Tree(Trie)
Suffix Tree
B-Tree
Suffix Array等-(classical algorithms implementations) (based on linux/gcc) (correct! and ease of use, one .header file per algorithm) one .header file per algorithm. )( one demo per algorithm. )(Please Use Fork+Pull Requests !!! Correctness is the most important!) Platform: |
Size: 1636352 |
Author:汪小君 |
Hits:
Description: 随机选择一个12位的整数n,用Miller-Rabin素性检测算法,测试n是否为素数。-A 12 randomly selected integer n, with Miller-Rabin primality testing algorithm, test n is prime. Platform: |
Size: 46080 |
Author:dongxiaodong |
Hits:
Description: 实验目的
许多密码算法和协议都需要“随机”的大素数,特别是在共享密钥的密码协议中。对于大素数的生成,一个最自然的方法是先生成一个大整数,然后对其进行素性检测。
实验内容与要求
随机选择一个12位的整数n,用Miller-Rabin素性检测算法,测试n是否为素数。
-Purpose of many cryptographic algorithms and protocols need to " random" large prime numbers, particularly in shared secret cryptographic protocols. For the generation of large prime numbers, one of the most natural way is the President into a large integer, then its primality testing. Test content and requirements a 12 randomly selected integer n, with Miller-Rabin primality testing algorithms, test n is prime. Platform: |
Size: 1024 |
Author:lei |
Hits:
Description: Fermat primality test. most applications use a Miller-Rabin or Baillie-PSW test for primality. Sometimes a Fermat test (along with some trial division by small primes) is performed first to improve performance. GMP since version 3.0 uses a base-210 Fermat test after trial division and before running Miller-Rabin tests. Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not. Platform: |
Size: 1024 |
Author:Beforavy |
Hits:
Description: 利用C\C++实现RSA算法的加、解密运算。
具体包括:
1)利用扩展的Euclid计算 a mod n 的乘法逆元;
2)Miller-Rabin素性测试算法对一个给定的大数进行测试;
3)实现的运算,并计算;
4)利用Euler定理手工计算,并与3)计算的结果对比;
5)实现RSA算法。并对 I LOVE NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS 加解密。说明:为了方便实现,分组可以小一点,比如两个字母一组。
字母及其数字编码 字母及其数字编码
空格 00 N 14
A 01 O 15
B 02 P 16
C 03 Q 17
D 04 R 18
E 05 S 19
F 06 T 20
G 07 U 21
H 08 V 22
I 09 W 23
J 10 X 24
K 11 Y 25
L 12 Z 26
M 13 -Use of C \ C++ implements the RSA algorithm encryption and decryption operations.
These include:
1) using the extended Euclid calculate a mod n multiplicative inverse
2) Miller-Rabin primality testing algorithm for a given test large numbers
3) to achieve the operation, and the calculation
4) the use of Euler Theorem manual calculation, and compared with the results of the calculation 3)
5) implement the RSA algorithm. And I LOVE NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS encryption and decryption. Description: In order to facilitate the achievement of the packet may be smaller, for example, a group of two letters.
Alphabet letters and their digital encoding and digital encoding
Spaces 00 N 14
A 01 O 15
B 02 P 16
C 03 Q 17
D 04 R 18
E 05 S 19
F 06 T 20
G 07 U 21
H 08 V 22
I 09 W 23
J 10 X 24
K 11 Y 25 Platform: |
Size: 1024 |
Author:刘洋 |
Hits:
Description: Miller-Rabin质数测试
输入
第1行:1个正整数t,表示数字的个数,10≤t≤50
第2..t+1行:每行1个正整数,第i+1行表示正整数a[i],2≤a[i]≤10^18
输出
第1..t行:每行1个字符串,若a[i]为质数,第i行输出 Yes ,否则输出 No -Miller-Rabin primality test
input
The first line: 1 positive integer T, said a number of figures, 10 t 50
Line 2..T+1: each line of 1 positive integers, i+1 expressed a positive integer a[i], 2 a[i] 10^18
output
Line 1..T: 1 string per line, if a[i] is a prime number, the I output Yes , otherwise output No Platform: |
Size: 1792000 |
Author:李慧林 |
Hits:
Description: Miller-Rabin test is a primality test algorithm which determines
whether a given number is prime or not. Implement Miller-Rabin primality test as
given in the text book page 257, Algorithm 7.44. (aN− 1 6= 1 mod N)
Write three functions to answer each of the below questions.
(a) Given a positive integer N, check whether it is prime or not.
1-1• Input: N
• Output: Prime or Not
• For example, Input: 31
• Output: prime
(b) Given a positive integer N, find the smallest prime greater than N.
• Input: N
• Output: M
• Example: Input: 25
• Output: 29
(c) For a composite number, N = 221 (13 ×17), Miller-Rabin test outputs N = 221
as ‘prime’ for a = 174. Such a are known as strong liars. Find all other strong
liars for the N = 221. Similarly, for a = 137 , it shows that N = 221 is composite. Such a’s are known as strong witness of compositeness. Find other strong
witnesses if any.-Miller-Rabin test is a primality test algorithm which determines
whether a given number is prime or not. Implement Miller-Rabin primality test as
given in the text book page 257, Algorithm 7.44. (aN− 1 6= 1 mod N)
Write three functions to answer each of the below questions.
(a) Given a positive integer N, check whether it is prime or not.
1-1• Input: N
• Output: Prime or Not
• For example, Input: 31
• Output: prime
(b) Given a positive integer N, find the smallest prime greater than N.
• Input: N
• Output: M
• Example: Input: 25
• Output: 29
(c) For a composite number, N = 221 (13 ×17), Miller-Rabin test outputs N = 221
as ‘prime’ for a = 174. Such a are known as strong liars. Find all other strong
liars for the N = 221. Similarly, for a = 137 , it shows that N = 221 is composite. Such a’s are known as strong witness of compositeness. Find other strong
witnesses if any. Platform: |
Size: 1024 |
Author:jitender grover |
Hits: