Welcome![Sign In][Sign Up]
Location:
Search - model solver

Search list

[OtherLINGO1

Description: LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。-LINGO is used for linear and nonlinear optimization problems of simple tools. LINGO establish a built-in the most optimal model language, making it easy to express large-scale problems, LINGO efficient use of the solver can be solved quickly and results of the analysis.
Platform: | Size: 932 | Author: 1 | Hits:

[Other resourceChoeKo2005a

Description: This paper presents an interactive technique that produces static hairstyles by generating individual hair strands of the desired shape and color, subject to the presence of gravity and collisions. A variety of hairstyles can be generated by adjusting the wisp parameters, while the deformation is solved efficiently, accounting for the effects of gravity and collisions. Wisps are generated employing statistical approaches. As for hair deformation, we propose a method which is based on physical simulation concepts but is simplified to efficiently solve the static shape of hair. On top of the statistical wisp model and the deformation solver, a constraint-based styler is proposed to model artificial features that oppose the natural flow of hair under gravity and hair elasticity, such as a hairpin. Our technique spans a wider range of human hairstyles than previously proposed methods, and the styles generated by this technique are fairly realistic.-This paper presents an interactive techni que that produces static NAR by generat ing individual hair strands of the desired shap e and color. subject to the presence of gravity and collisio ns. A variety of NAR can be generated by a djusting the wisp parameters, while the deformation is solved efficiently, accounting for the effects of gravity and colli sions. Wisps are generated employing statisti cal approaches. As for hair deformation. we propose a method which is based on physical si mulation concepts but is simplified to efficie ntly solve the static shape of hair. On top of the wisp statistical model and the deformation sol ver. a constraint-based styler is proposed to model artificial features that oppose the natural fl ow under gravity of hair and hair elasticity. such as a hairpi
Platform: | Size: 6945421 | Author: Andy | Hits:

[Windows Develophqp-1.9.4.tar

Description: HQP is a solver for nonlinearly constrained large-scale optimization. It is primarily intended for the optimization of dynamic systems. HQP is implemented as framework in C++. External model interfaces are provided for CUTE and Simulink S-function.
Platform: | Size: 2228510 | Author: lwave2000 | Hits:

[Algorithmhyplas

Description: ************************************************************************ * * * * * THIS IS THE H Y P L A S 2.0 README FILE * * ----------------- * * * * HYPLAS is a finite element program for implicit small and large * * strain analisys of hyperelastic and elasto-plastic two-dimensional * * and axisymmetric solids * * * * HYPLAS v2.0 is the companion software to the textbook: * * EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for * * Plasticity: Theory and Applications. Wiley, Chichester, 2008. * * (www.wiley.com/go/desouzaneto) * * * * Copyright (c) 1998-2008 EA de Souza Neto, D Peric, D.R.J. Owen * *----------------------------------------------------------------------* * File last updated: 18 October 2008 * * * * This file belongs in the directory ../HYPLAS_v2.0 * ************************************************************************ * * * I M P O R T A N T * * * * READ SECTIONS 0 TO 3 OF THIS FILE CAREFULLY BEFORE ATTEMPTING * * TO COMPILE AND RUN THE PROGRAM HYPLAS ON YOUR COMPUTER !! * * * * THE AUTHORS DO NOT GUARANTEE THAT ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN IN THIS README FILE WILL WORK ON ANY PARTICULAR OPERATING * * SYSTEM. IF YOU DECIDE TO FOLLOW ANY SUGGESTIONS/INSTRUCTIONS * * GIVEN HERE YOU MUST DO SO AT YOUR OWN RISK. * * * * * * BUG REPORTS: Please send bug reports to * * * * hyplas_v2.0@live.co.uk * * * * Messages sent to the authors' personal email addresses * * will NOT be answered. * ************************************************************************ This file contains the following sections: 0. Copyright statement and disclaimer 0.(a) Copyright statement 0.(b) Disclaimer 0.(c) Conditions of use 1. Introduction 1.(a) Note on portability 2. Compiling and running HYPLAS 2.(a) Memory requirements 2.(b) Testing a newly compiled executable 3. The HYPLAS directory tree 4. Cross-referencing between the source code and the textbook 5. HYPLAS error messaging 6. Further remarks on HYPLAS ************************************************************************ 0. COPYRIGHT STATEMENT AND DISCLAIMER ================================== 0.(a) Copyright statement ------------------- You may only use this program for your own private purposes. You are not allowed, in any circumstances, to distribute this program (including its source code, executable and any other files related to it, either in their original version or any modifications introduced by you, the authors or any other party) in whole or in part, either freely or otherwise, in any medium, without the prior written consent of the copyright holders. 0.(b) Disclaimer ---------- This program (including its source code, executable and any other files related to it) is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, any implied warranties of fitness for purpose. In particular, THIS PROGRAM IS BY NO MEANS GUARANTEED TO BE FREE FROM ERRORS. This program (or any modification incorporated to it by you, the authors or any other party) will run entirely at your risk. The results produced by this program are in no way guaranteed to be fit for any purpose. Under no circumstances will the authors/copyright holders be liable to anyone for damages, including any general, special, incidental or consequential damages arising from the use or inability to use the program (including, but not limited to, loss or corruption of data, failure of the program to operate in any particular way as well as damages arising from the use of any results produced by the program for any purpose). 0.(c) Conditions of use ----------------- You may only use this program if you fully understand and agree with the terms of the above disclaimer. You must not use this program if you do not agree with or do not understand (fully or in part) these conditions of use. 1. INTRODUCTION ============ HYPLAS is a finite element code for small and large strain analysis of hyperelastic and elasto-plastic solids. Most procedures implemented in HYPLAS are described in detail in its companion textbook: EA de Souza Neto, D Peric & DRJ Owen. Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester, 2008 (www.wiley.com/go/desouzaneto). 1.(a) Note on Portability ------------------- HYPLAS has been written in standard ANSI FORTRAN 77. Currently, the only known (and deliberate) exceptions to the FORTRAN 77 ANSI standard are the instructions: INCLUDE '' used in many routines to include the HYPLAS database files (common blocks and global variables), and; CALL GETENV('HYPLASHOME',HYPLASHOME) used in subroutine "ERRPRT" (file ../HYPLAS_v2.0/src/GENERAL/errprt.f). This instruction inquires the name of the system environment variable HYPLASHOME and writes it on the character string HYPLASHOME. This instruction is NOT part of the ANSI FORTRAN 77 standard, but seems to work in most currently available FORTRAN 77 compilers. 2. COMPILING AND RUNNING H Y P L A S ================================== The HYPLAS source code is stored in directory ../HYPLAS_v2.0/src/ (../HYPLAS_v2.0/ being the current directory) and all its subdirectories. To generate an executable file, you just need to compile the FORTRAN source files: ../HYPLAS_v2.0/src/hyplas.f and ../HYPLAS_v2.0/src/*/*.f together. We recommend that the executable HYPLAS be stored in the directory ../HYPLAS_v2.0/bin to which the environment variable HYPLASHOME should be set (see below how to set a system environmental variable). WINDOWS (R) systems ------------------- On Microsoft Windows(R) systems, HYPLAS has been successfully compiled using Intel Visual Fortran Compiler(R) integrated with Microsoft Visual Studio(R). Here you only need to create a project that contains all Fortran source files mentioned above as well as the include files ..\HYPLAS_v2.0\src\*.INC On a Windows XP system, the system environment variable HYPLASHOME can be set as follows: 1. Open a File Manager 2. Right-click on the "My Computer" icon 3. Select "Properties" on the drop-down menu 4. A new window named "System Properties" will pop-up. Here select the "Advanced" tab. 5. On the "Advanced" tab, click the "Environment Variables" button. 6. A new window titled "Environment Variables" will pop-up. Here click the button "New" in the "System Variables" section of the window. 7. A new window will pop-up titled "New System Variable". Here you should fill the fields "Variable name" and "Variable Value", respectively, with HYPLASHOME and the path name (in full) of the directory ..\HYPLAS_v2.0\bin. 8. Press "OK" on the relevant pop-up windows. 9. The next time the computer is REBOOTED, this variable will be set to the correct path and HYPLAS should be able to find the error messages file ERROR.RUN if required. UNIX/LINUX systems ------------------ In a UNIX/LINUX operating system using a C-shell, for instance, the HYPLASHOME environment variable should be set with the command: setenv HYPLASHOME where here denotes the full path to the directory ../HYPLAS_v2.0/bin. To compile HYPLAS (from directory ../HYPLAS_v2.0/src) with a FORTRAN 77 compiler such as g77, you can use the command: g77 -o ../bin/hyplas hyplas.f */*.f Note that the executable file "hyplas" will be stored in the directory ../HYPLAS_2.0/bin (i.e. the directory set in the HYPLASHOME environment variable). Alternatively, you may use the Makefile provided (with suitable modifications, if needed) to create the HYPLAS executable. IMPORTANT: Before generating a HYPLAS executable, read Sections 2.(a) and 2.(b) below. 2.(a) Memory Requirements ------------------- HYPLAS memory requirements depend on the array dimensioning parameters set in files: ../HYPLAS_v2.0/src/ ELEMENTS.INC GLBDBASE.INC MATERIAL.INC MAXDIM.INC Files ELEMENTS.INC, GLBDBASE.INC and MATERIAL.INC contain parameters which are associated with the currently implemented finite elements and materials. DO NOT MODIFY THEM ! unless you are absolutely sure of what you are doing (only developers coding new elements or new material models/analysis types may need to modify them by changing the existing dimensioning parameters and/or including new parameters). The ONLY dimensioning file that can be safely modified by the average user is the file MAXDIM.INC This file contains the array dimensioning parameters related to the maximum permissible dimension of problems to be analysed by HYPLAS. These parameters include the maximum number of nodes, elements, element groups, etc. If necessary, CHANGE THESE PARAMETERS TO SUIT YOUR PROBLEM SIZE/MEMORY REQUIREMENTS before compiling HYPLAS. 2.(b) Testing a newly compiled executable ----------------------------------- After you have successfully compiled the HYPLAS source code and created an executable file, the next step is to run some tests to verify that HYPLAS is working well. To do this, proceed as follows: The directory ../HYPLAS_v2.0/book_examples/data_files contains a series of data files named .dat of benchmarked examples described in the companion textbook. The corresponding (benchmarked) result files are in the directory ../HYPLAS_v2.0/book_examples/result_files This directory contains a series of result files named .res generated with the current version of HYPLAS on a tested platform. All these files have been named such that their names start with the textbook section number where the corresponding example is described. For instance, files 14_9_2_tresca.dat and 14_9_2_tresca.res refer to a problem described in section 14.9.2 of the textbook, and so on. To check that HYPLAS is working well on your platform, after compiling HYPLAS, run the program HYPLAS for the examples of files .dat and compare the newly generated results .res with their benchmarked counterparts (of the same filename) in the result_files directory. To run an example, execute HYPLAS and use the keyboard to enter the name of the corresponding data file in full (including the extension .dat). To compare the benchmarked .res files against their newly generated you may proceed as follows: 1. On MICROSOFT WINDOWS systems - Here we have successfully used the software "ExamDiff" (the task was made particularly easy by selecting "View" and then the "Show Differences Only" option - this refers to version 1.8 of this software). 2. On UNIX/LINUX systems - Here we use the "diff" command from a shell window (and set the option to ignore blank spaces). A shell script may be used to perform this task automatically (including running HYPLAS and checking for result file differences) for all benchmarked examples provided. IMPORTANT: THE ONLY ACCEPTABLE DIFFERENCES BETWEEN A THE NEWLY GENERATED RESULT FILES AND THEIR BENCHMARKED COUNTERPARTS ARE THE DIMENSIONING PARAMETERS (FROM FILE MAXDIM.INC) USED TO COMPILE THE NEW EXECUTABLE (THESE PARAMETERS ARE PRINTED RIGHT AT THE BEGINNING OF THE RESULT FILES) AND NUMERICAL DIFFERENCES IN RESULTS DUE TO NUMERICAL "ROUNDING-OFF" (THESE ARE VERY SMALL DIFFERENCES THAT DEPEND ON THE PRECISION OF ARITHMETIC OPERATIONS IN THE PLATFORM USED). ALSO NOTE THAT THE EXAMPLES OF THE COMPANION TEXTBOOK DO NOT COVER ALL FEATURES OF HYPLAS. HENCE THIS TEST DOES NOT GUARANTEE THAT EVERYTHING IS WORKING PROPERLY. 3. THE H Y P L A S DIRECTORY TREE ================================ 3.(a) Summary ------- ../ HYPLAS_v2.0/ bin/ book_examples/ data_files/ result_files/ man/ html/ src/ CRYSTAL/ DAMAGE/ DAMAGED_ELASTIC/ DRUCKER_PRAGER/ ELASTIC/ ELEMENTS/ GENERAL/ MATERIALS/ MATHS/ MOHR_COULOMB/ OGDEN/ TRESCA/ VON_MISES/ VON_MISES_MIXED/ 3.(b) Description ----------- The HYPLAS program directory tree is organised as follows: ../HYPLAS_v2.0/ (this directory) This is the HYPLAS root directory, where the HYPLAS directory tree starts. ../HYPLAS_v2.0/bin/ This directory contains the file ERROR.RUN where most HYPLAS error/warning messages are. IMPORTANT: the environment variable HYPLASHOME should be set to this directory. Otherwise, HYPLAS will not find its error/warning messages when required. We also recommend that the EXECUTABLE of HYPLAS be stored in this directory. ../HYPLAS_v2.0/book_examples/ This directory has the following subdirectories: ../HYPLAS_v2.0/book_examples/data_files ../HYPLAS_v2.0/book_examples/result_files Refer to Section 2.(b) above for further details. ../HYPLAS_v2.0/man/ This is the HYPLAS documentation/manuals directory. It contains the following files: input_man.txt - A concise input data manual for HYPLAS in ASCII format; hyplas_calltree.txt - Contains a flowgraph (shows the call tree) of HYPLAS in ASCII-format. Note: calls to function subprograms are not included in this flowgraph; and the subdirectory: ../HYPLAS_v2.0/man/html This directory contains the hypertext (HTML) format Fortran source code and of manual pages of the entire HYPLAS program. Manual pages with descriptions of each function/subprogram including their argument list are linked to their corresponding HTML-format source code. This allows the user the navigate through the HYPLAS source code using a web browser. To start at the main program, use your web browser to open the file hyplas.html. This facility should be helpful to those trying to understand the flow of program HYPLAS. ../HYPLAS_v2.0/src/ This directory (and its subdirectories) contains the Fortran source code of HYPLAS. The files containing the sources are named following the standard practice: .f where is the name of the FORTRAN procedure (subroutine, function subprogram, etc.) whose source code is in file .f. The source code of the HYPLAS main program is in file hyplas.f and the HYPLAS database (COMMON blocks, array dimensioning parameters and other global parameters) is coded in the "include files" ELEMENTS.INC GLDBASE.INC MATERIAL.INC MAXDIM.INC in this directory. In addition, this directory contains a file named "Makefile" (UNIX-LINUX Release only) which may be used for compiling and linking HYPLAS in UNIX/LINUX systems. The subdirectories of ../HYPLAS_v2.0/src are as follows: ../HYPLAS_v2.0/src/CRYSTAL Contains the source code of all procedures related to the finite strain single crystal plasticity model implemented in HYPLAS. ../HYPLAS_v2.0/src/DAMAGE Source files of the procedures related to the Lemaitre ductile damage model implementation. ../HYPLAS_v2.0/src/DAMAGED_ELASTIC Source files of the procedures related to the damaged elasticity model with crack closure effect. ../HYPLAS_v2.0/src/DRUCKER_PRAGER Source files of the procedures related to the implemented Drucker-Prager plasticity model. ../HYPLAS_v2.0/src/ELASTIC Source files of the procedures related to the linear elasticity model (Hencky model under large strains) implemented. ../HYPLAS_v2.0/src/ELEMENTS Source files of the element interfaces and element-related procedures. ../HYPLAS_v2.0/src/GENERAL Source files of general procedures. ../HYPLAS_v2.0/src/MATERIALS Source files of the material interfaces. ../HYPLAS_v2.0/src/MATHS Source files of the mathematical procedures. ../HYPLAS_v2.0/src/MOHR_COULOMB Source files of the procedures related to the implemented Mohr-Coulomb plasticity model. ../HYPLAS_v2.0/src/OGDEN Source files of the procedures related to the implemented Ogden hyperelasticity model. ../HYPLAS_v2.0/src/TRESCA Source files of the procedures related to the implemented Tresca plasticity model. ../HYPLAS_v2.0/src/VON_MISES Source files of the procedures related to the implemented von Mises plasticity model with isotropic hardening. ../HYPLAS_v2.0/src/VON_MISES_MIXED Source files of the procedures related to the implemented von Mises plasticity model with mixed isotropic/kinematic hardening. 4. CROSS-REFERENCING BETWEEN THE SOURCE CODE AND THE TEXTBOOK ========================================================== Many references are made in the textbook to various subprograms of HYPLAS. These are usually made when a particular procedure described in the text is implemented in the program. The reader should refer to the textbook index. Also, a substantial number of comment lines have been added to the source code of HYPLAS with reference to sections, figures, boxes, etc of the textbook related to the part of the code in question. Such references are usually displayed after the word "REFERENCE:" (in capitals) on commented lines. Searching for this word will take you to the line of code where the particular routine has a reference to the textbook. NOTE: Occasional references to other textbooks/journal papers are also made following the word "REFERENCE:" on commented lines. 5. HYPLAS ERROR MESSAGING ====================== Most error/warning messages issued by HYPLAS are in the ASCII-format file ERROR.RUN (kept in the HYPLASHOME directory - ../HYPLAS_v2.0/bin). All such error/warning messages have an identification code (e.g. ED0015) which is printed both to the standard output (this is usually the computer screen) and to the relevant results file. If you wish to find where in the source code a particular message is being issued, then perform a search for the corresponding message identification code in the entire source code of HYPLAS. 6. FURTHER REMARKS ON HYPLAS ========================= 6.(a) Program efficiency THIS SECTION IS OF INTEREST ONLY TO THOSE WANTING TO MAKE HYPLAS RUN FASTER. It is particularly stressed in the textbook that this program has not been designed having efficiency in mind (refer to Section 5.1.2 of the textbook). Its structure has been designed mainly to illustrate in a relatively clear manner the computer implementation of the techniques and algorithms described in the text, with a particular view to the implementation of solid constitutive models and finite elements. For those who are especially interested in the speed of the code, there are a few tips that could help in this direction. Unfortunately, these involve modifications to the source code which is probably most appropriate to readers with a good level of experience in finite element programming. To those with this particular interest, we can suggest the following: (i) The use of faster linear solvers This is probably the change that would result in a greater gain in efficiency. The Frontal Method adopted in subroutine FRONT (file ../HYPLAS_v2.0/src/GENERAL/front.f) has been designed originally to save memory (back in the days when computer memory was severely limited). There are currently a vast number of methodologies which focus on speeding up the linear solution, in addition to reducing memory storage requirements (which is a particularly important issue in the solution of large scale problems). Some of these are extensions/refinements of the original Frontal solver. We remark that a number of such procedures (with their respective source codes) are available (conditions may apply) from the LAPACK (Linear Algebra PACKage - http://www.netlib.org/lapack) repository or from the HSL Library (http://www.cse.cse.scitech.ac.uk/nag/hsl). For the reader interested in gaining speed, we would recommend the replacement of the existing solver of FRONT by a faster one. We remark though that this is a substantial programming task. Another aspect here is the fact that computing times in FRONT are directly linked to the frontwidth of the system which, in the present version of HYPLAS is fixed and depends, for a given mesh, on how the degrees of freedom are numbered (node numbering). The incorporation of a frontwidth optimiser (which re-numbers the degrees of freedom in order to minimise the frontwidth) in FRONT could produce some good savings in computing times. Such savings become particularly noticeable in larger problems where the original node numbering produces an excessively large frontwidth. (ii) Material-specific computations The issues pointed out here affect only the computing times for specific material models and are expected to have a much lower impact in overall speed than the linear solver issue discussed above. Some of the material model-specific computations carried out in HYPLAS could be made a bit faster. For example, for isotropic models whose stress update is carried out in the principal stress space (such as the Tresca and Mohr-Coulomb models - see routines SUTR and SUMC, files ../HYPLAS_v2.0/src/TRESCA/sutr.f and ../HYPLAS_v2.0/MOHR_COULOMB/sumc.f, respectively) the spectral decomposition of the stress in carried out in the state update update routine and then repeated in the corresponding routine for computation of the consistent tangent operator (refer to files ../HYPLAS_v2.0/src/TRESCA/cttr.f and ../HYPLAS_v2.0/src/MOHR_COULOMB/ctmc.f, respectively, for the Tresca and Mohr-Coulomb plasticity models). Some savings in computing time can be achieved here by storing the stress eigenprojection tensors (these can be stored as state variables) during the execution of the state updating and then retrieving them later for use in the computation of the consistent tangent operator. This change can be incorporated to the code relatively easily. The computation of the exponential map and is derivative for the single crystal plasticity model (routines EXPMAP, file ../HYPLAS_v2.0/src/CRYSTAL/expmap.f and DEXPMP, file ../HYPLAS_v2.0/src/CRYSTAL/dexpmp.f) is carried out in three dimensions (these routines have been adapted from an earlier three-dimensional code). To improve efficiency, these can be adapted to work only in two-dimensional problems by removing the unnecessary operations related to the third dimension. 6.(b) Output of nodal averaged values The reader should be aware that the way in which nodal averaged values of stresses and other variables are calculated in HYPLAS is very basic (and rudimentary). This feature of the program is made available only to help those interested in producing contour plots, etc from results presented in HYPLAS result files and should be useful in many circumstances of interest. This facility has in fact been used in producing many of the figures presented in the textbook. But note, for example, that the values of incremental plastic multipliers for plasticity models may take (inadmissible) negative values when extrapolated from Gauss-point to nodes and averaged. We remark that more sophisticated and refined techniques of transferring Gauss point values of variables to nodal points and obtaining the corresponding smoothed field are available in the current literature. These fall outside the scope of the companion textbook of HYPLAS.
Platform: | Size: 11008084 | Author: gtcewli3 | Hits:

[OtherLINGO1

Description: LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。-LINGO is used for linear and nonlinear optimization problems of simple tools. LINGO establish a built-in the most optimal model language, making it easy to express large-scale problems, LINGO efficient use of the solver can be solved quickly and results of the analysis.
Platform: | Size: 1024 | Author: 1 | Hits:

[Technology ManagementDEA_Analysis

Description: 本文应用DEA模型对钢铁上市公司的业绩进行了实证研究。通过DEA有效分析和规模收益分析对十四家上市公司的业绩进行了效率衡量,为投资者理性投资提供了参考依据,也为上市公司提高效率提供了数据借鉴。-Using DEA model of the steel the performance of listed companies in the empirical study. DEA through effective analysis and scale benefit analysis of 14 listed companies in the performance efficiency measure, rational investment for investors provide a reference, as well as listed companies to increase the efficiency of the data reference.
Platform: | Size: 41984 | Author: wangyuliang | Hits:

[Otherlingo

Description: lingo基础教程.doc LINGO使用指南 LINGO是用来求解线性和非线性优化问题的简易工具。LINGO内置了一种建立最优化模型的语言,可以简便地表达大规模问题,利用LINGO高效的求解器可快速求解并分析结果。 §1 LINGO快速入门 当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。 例1.1 -lingo Essentials. docLINGO User Guide LINGO is used to solve linear and nonlinear optimization problems of simple tools. LINGO built an optimization model for the establishment of the language can easily express the large-scale problems, using efficient solver LINGO can quickly solving and analytical results. § 1 LINGO Quick Start When you start windows to run LINGO system, we will get a window similar to the following: the outer layer is the main frame window, contains all menu commands and toolbars, all other window will be included in the main window under. In the main window with the title for LINGO Model- LINGO1 the window is the default model LINGO window model are all in the coding window realize. The following two examples. Example 1.1
Platform: | Size: 166912 | Author: 谭永彪 | Hits:

[Windows Develophqp-1.9.4.tar

Description: HQP is a solver for nonlinearly constrained large-scale optimization. It is primarily intended for the optimization of dynamic systems. HQP is implemented as framework in C++. External model interfaces are provided for CUTE and Simulink S-function.
Platform: | Size: 2228224 | Author: | Hits:

[MacOS developangularvelocity

Description: 无陀螺捷联惯导系统角速度解算,基于六加速度计立方体模型。-GFSINS system angular velocity solver, based on the six-accelerometer cube model.
Platform: | Size: 1024 | Author: liuzhiping | Hits:

[OtherLingo

Description: Lingo是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。   由于这些特点,Lindo系统公司的线性、非线性和整数规划求解程序已经被全世界数千万的公司用来做最大化利润和最小化成本的分析。应用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、混合排程、库存管理、资源配置等等... -Lingo is a kind of optimization problem modeling language, including many commonly used functions available for users to create optimized model call, and provide other data files (such as a text file, Excel spreadsheet files, database files, etc.) interface, easy easy to enter, solving and analyzing large-scale optimization problem. As a result of these characteristics, Lindo Systems, Inc. linear, nonlinear and integer programming solver has been the company tens of millions around the world used to maximize profit and minimize the cost of analysis. The scope of application include production line planning, transport, finance finance, investment allocation, capital budgeting, mixed scheduling, inventory management, resource allocation and so on ...
Platform: | Size: 317440 | Author: huierqing | Hits:

[matlabdea

Description: 用matlab编程求解DEA方法中的CCR对偶模型-DEA with the matlab programming method for solving the CCR dual model
Platform: | Size: 1024 | Author: jj87827484 | Hits:

[matlabData_fusion

Description: 为了获得更加准确的估计位置,对一种基于数据融合的定位解算算法进行了研究,在将模拟退火算法与经典的泰勒级数展开法和Chan氏算法进行性能比较的基础上,将模拟退火算法与上述两种经典的位置解算算法相结合,通过构造多算法协同定位模型,并基于该模型设计了融合定位算法,对传统定位解算算法进行改进,提出了一种基于数据融合的定位解算算法。仿真结果表明,融合算法的定位精度优于非融合算法且运算量较小-In order to obtain more accurate estimates of the location of a data fusion-based positioning solver algorithm is studied in the simulated annealing algorithm with the classical Taylor series expansion method and Chan' s algorithms performance comparison based on simulated annealing algorithm with the above-mentioned two kinds of classical solution calculate the location of the Combination, by constructing a multi-algorithm co-location model, and model design based on the location of the fusion algorithm, the traditional location solver algorithm is proposed to improve a position based on data fusion solver algorithm. Simulation results show that the positioning accuracy of better than fusion fusion algorithm and the computation of non-small
Platform: | Size: 287744 | Author: hufei | Hits:

[matlabForcedPendulum

Description: This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega + omega/Q + sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986) -This simulink model simulates the damped driven pendulum, showing it s chaotic motion. theta = angle of pendulum omega = (d/dt)theta = angular velocity Gamma(t) = gcos(phi) = Force omega_d = (d/dt) phi Gamma(t) = (d/dt)omega+ omega/Q+ sin(theta) Play with the initial conditions (omega_0, theta_0, phi_0 = omega(t=0), theta(t=0), phi(t=0)) and the system parameters (g, Q, omega_d) and the solver parameters/method. Chaos can be seen for Q=2, omega_d=w/3. The program outputs to Matlab time, theta(time) & omega(time). Plot the phase space via: plot(mod(theta+pi, 2*pi)-pi, omega, . ) Plot the Poincare sections using: t_P = (0:2*pi/omega_d:max(time)) plot(mod(spline(time, theta+pi, t_P), 2*pi)-pi, spline(time, omega, t_P), . ) System is described in: "Fractal basin boundaries and intermittency in the driven damped pendulum" E. G. Gwinn and R. M. Westervelt PRA 33(6):4143 (1986)
Platform: | Size: 8192 | Author: Mike Gao | Hits:

[Algorithmsolver_elastoplasticity_web

Description: 2D elastoplasticity solver for a time dependent two-yied model, which generalizes a classical model of linear kinematic hardening and features a hysteresis behaviour. -2D elastoplasticity solver for a time dependent two-yied model, which generalizes a classical model of linear kinematic hardening and features a hysteresis behaviour.
Platform: | Size: 17408 | Author: 何冰 | Hits:

[AlgorithmFEMBeamVibAnalysis.d

Description: finite element method solver of a vibrating beam model
Platform: | Size: 11264 | Author: | Hits:

[OtherPW-model-PDE-solver

Description: 求解PW方程的solver,能够求解多参数情形下的PW方程-Solving PW equation solver, PW equation can be solved for the case of multi-parameter
Platform: | Size: 2048 | Author: zhaodong wang | Hits:

[CSharpEGM1996

Description: 地球高程模型解算,地球个特殊部分重力异常计算-Earth elevation model solver Earth a special part of the gravity anomaly calculated
Platform: | Size: 1837056 | Author: 刘洋 | Hits:

[Algorithmtotal-least-model

Description: 整体最小二乘法的应用,包括多项式法解算整体最小二乘模型,中心法解算模型-Total least squares applications, including the overall least squares polynomial solver model calculation model central France
Platform: | Size: 30720 | Author: 俞礼彬 | Hits:

[ERP-EIP-OA-PortalDEA-SOLVER-Pro5

Description: 数据包络分析算法模型,DEA-Solver Pro v5-Data Envelopment Analysis Model
Platform: | Size: 2291712 | Author: 汪隆君 | Hits:

[Windows DevelopVOF model solver

Description: VOF模型的源代码,可用于与多相流仿真。(Source code of the VOF CFD model, it is very valuable in multi-phase flow simulation.)
Platform: | Size: 39936 | Author: cqukangyh | Hits:
« 12 3 »

CodeBus www.codebus.net