Welcome![Sign In][Sign Up]
Location:
Search - mykmeans

Search list

[Other resourceMyKmeans

Description: 实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Platform: | Size: 1378 | Author: 阿兜 | Hits:

[matlabMyKmeans

Description: 实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Platform: | Size: 1024 | Author: 阿兜 | Hits:

[matlabmykmeans

Description: matlab code for k-means for neural net RBF
Platform: | Size: 2048 | Author: Mary | Hits:

[JSP/JavaMyKmeans

Description: 使用java实现了数据挖掘中的K-mean算法,并进行了适当的改进,代码清晰,支持多维,可以方便修改代码接口。-Java implementation of data mining using the K-mean algorithm, and make the appropriate improvements, code clarity, support multi-dimensional, you can easily modify the code interface.
Platform: | Size: 7168 | Author: 颜超 | Hits:

[2D Graphicmykmeans

Description: k-means算法 算法算法 算法算法 算法 -k-means algorithm algorithm algorithm algorithm algorithm algorithm algorithm algorithm algorithm algorithm algorithm
Platform: | Size: 1024 | Author: 赵翔 | Hits:

[matlabmyKmeans

Description: matlab implementation of k-means classification algorithm to classify images.
Platform: | Size: 1024 | Author: Xiaoyang | Hits:

[matlabmyKmeans

Description: k_means algorithm with matlab
Platform: | Size: 2048 | Author: poor | Hits:

[matlabmykmeans

Description: 我写的一个带权重的kmeans算法,在计算中心点的位置时考虑到了每个点的权重-I wrote a kmeans algorithm with weights in the calculation of the position of the center point to take into account the weight of each point
Platform: | Size: 1024 | Author: yxy | Hits:

[matlabmykmeans

Description: Image Segmentation is vital role in nowadays. The K-means algorithm usually the initial centroids for the K-means clustering are determined randomly so that the determined centroids may reach the nearest local minima, not the global optimum.
Platform: | Size: 1024 | Author: Satya | Hits:

[Graph programMykmeans

Description: 改进的K-means算法,速度快,输入是样本的特征向量和聚类类别数,每一行代表一个样本,每一列代表一个特征,输出聚类标签-Improved K-means algorithm, fast, is a sample of the input feature vectors and cluster number of categories, each row represents a sample, and each column represents a characteristic output cluster labels
Platform: | Size: 3072 | Author: guo kuan | Hits:

[assembly languagemykmeans

Description: 适合初学者学习kmeans聚类算法的简单的MATLAB程序,可以直接调用实现聚类结果-it is useful for beginners to learn about kmeans algorithm
Platform: | Size: 2048 | Author: 贺佳妮 | Hits:

[JSP/JavamyKmeans

Description: k均值 kmeans算法java 可直接调用-kmeans java
Platform: | Size: 10240 | Author: 王梦佳 | Hits:

[DataMiningmyKmeans.m

Description: 模式识别学习中使用matlab编写的Kmeans算法实现的小程序-Learning to use pattern recognition matlab prepared Kmeans algorithm small program
Platform: | Size: 1024 | Author: zhouzhou_yu | Hits:

CodeBus www.codebus.net