Welcome![Sign In][Sign Up]
Location:
Search - neuro network

Search list

[Other resourceneuro_demo

Description: Neuro network demo. Include SOM, Back Propagation and some simple example.-Neuro network demo. Include SOM. Back Propagation and some simple example.
Platform: | Size: 460606 | Author: hui song | Hits:

[Other resourceBPNEURO

Description: neuro network BPnetworks
Platform: | Size: 4164 | Author: 付飞华 | Hits:

[AI-NN-PRneuro_demo

Description: Neuro network demo. Include SOM, Back Propagation and some simple example.-Neuro network demo. Include SOM. Back Propagation and some simple example.
Platform: | Size: 460800 | Author: hui song | Hits:

[AI-NN-PRneuro

Description: 神经网络中的神经元代码,用c++变的,变得不好,请大家指点-Neural network of neurons code, with c++ Change and become good, please instruct the U.S.
Platform: | Size: 2356224 | Author: qinxuri | Hits:

[matlabBPNEURO

Description: neuro network BPnetworks
Platform: | Size: 4096 | Author: 付飞华 | Hits:

[AI-NN-PR8nn-src

Description: Neural Networks ,8种神经网络,BP,RBF,CPN等通过VC++来实现了!-Neural Networks, 8 Neuro network, BP, RBF, CPN, such as through VC++ To achieve!
Platform: | Size: 285696 | Author: 军军 | Hits:

[AI-NN-PRfuzzy-neural-network-matlab-implementation.

Description: 输入为-两输入,输出为-单输出的模糊神经网络matlab实现。-Input- two input, output- single-output fuzzy neural network matlab implementation.
Platform: | Size: 1024 | Author: fanxingdiandian | Hits:

[AI-NN-PRBPnetwork

Description:
Platform: | Size: 3072 | Author: sunguangbin | Hits:

[matlabDFNN

Description: 这是神经模糊网络中的D-FNN,极其所用到的函数程序。-This is a neuro-fuzzy network in the D-FNN, most of the procedures used in the function.
Platform: | Size: 2048 | Author: 张宁 | Hits:

[Mathimatics-Numerical algorithmsNeuro

Description: Sigmoid activation function for neural network
Platform: | Size: 5120 | Author: Diana | Hits:

[matlabENFRN_GRN_toolbox

Description: ENFRN GRN toolbox: using a neuro-fuzzy algorithm to predict the gene regulatory network by matlab.
Platform: | Size: 35840 | Author: Penny | Hits:

[matlabcaovanhai_11506161

Description: neuro network for matlab in controler
Platform: | Size: 380928 | Author: huutinh | Hits:

[Software Engineeringfuzzy-neuro--network

Description: 摘要:为了减少先验知识对统一潮流控制器中模糊规则的设计和电力系统参数的变化对统一潮流控制器性能的影响, 文中采用模糊神经网络来设计统一潮流控制器-Abstract: In order to reduce a priori knowledge of the unified power flow controller in the fuzzy rules in the design and power system parameters on the unified power flow controller performance, the paper design of fuzzy neural networks to a unified power flow controller
Platform: | Size: 256000 | Author: 唐传胜 | Hits:

[AI-NN-PRintuitionisticfuzzyreasoning

Description: 建立了自适应神经一直觉模糊推理系统,直觉模糊神经网络的函数逼近能力 -The establishment of adaptive neuro-fuzzy inference system intuitive, intuitive fuzzy neural network function approximation ability
Platform: | Size: 203776 | Author: 冯晓芳 | Hits:

[matlabRBF-neuro-network

Description: Radius Basic Function 神经网络的预测程序-Radius Basic Function neural network prediction program
Platform: | Size: 18432 | Author: h | Hits:

[AI-NN-PRhopfield_neuro_network

Description: apply hopfield neuro network to solve TSP
Platform: | Size: 3072 | Author: Michael | Hits:

[AI-NN-PRUntitled

Description: 手写体数字辨别,样本数据与训练数据均来自UCI 机器学习数据库网站:http://archive.ics.uci.edu/ml/datasets.html 采用BP多学习率算法-BP algorithm of neuro network
Platform: | Size: 2048 | Author: 赵海伦 | Hits:

[AI-NN-PR97288406stock_market_forecasting

Description: 非常有用的FNN相关资料,比较基础的股票预测,上传看看对大家是否有帮助-FNN fuzzy neuro network
Platform: | Size: 300032 | Author: aa | Hits:

[AI-NN-PRCPN

Description: 模糊神经网络相关书籍,希望对大家有所帮助-fuzzy neuro network
Platform: | Size: 250880 | Author: aa | Hits:

[AI-NN-PRFuzzy-Neural-Network-by-matlab

Description: 这是一个四个不同的S函数实现集合的递归模糊神经网络(RFNN)。该网络采用了4组可调参数,这使得它非常适合在线学习/操作,从而可应用到系统识别等方面。-This is a collection of four different S-function implementations of the recurrent fuzzy neural network (RFNN) described in detail in [1]. It is a four-layer, neuro-fuzzy network trained exclusively by error backpropagation at layers 2 and 4. The network employs 4 sets of adjustable parameters. In Layer 2: mean[i,j], sigma[i,j] and Theta[i,j] and in Layer 4: Weights w4[m,j]. The network uses considerably less adjustable parameters than ANFIS/CANFIS and therefore, its training is generally faster. This makes it ideal for on-line learning/operation. Also, its approximating/mapping power is increased due to the employment of dynamic elements within Layer 2. Scatter-type and Grid-type methods are selected for input space partitioning.
Platform: | Size: 117760 | Author: 林真天 | Hits:
« 12 »

CodeBus www.codebus.net