Location:
Search - nit-pro
Search list
Description: 一个完整的航空票务系统,完整的解决方案,可以供初学者学习如何实现一个系统-A complete air ticketing system, a complete solution for beginners to learn how to achieve a system
Platform: |
Size: 13021184 |
Author: bill |
Hits:
Description: NIT-Pro软件工程师(JAVA)案例题样题-NIT-Pro
Platform: |
Size: 379904 |
Author: 小明 |
Hits:
Description: 这是一篇关于半监督的论文,半监督学习问题广泛存在于现实世界中, 已经成为目前机器学习和模式识别领域中的一个研究热点. 文章
综述了半监督学习问题的基本思想、研究现状、常用算法及其一些应用领域, 分析了目前存在的主要困难, 并指出需进一步研究的几个问题.-Sem-i supervised learning has been w idely used in the w orld and become a hot topic in the resear ch
field of machine learning and pattern recog nit ion. T he paper summarizes the basic assumption, the resear ch
situat ion at present , and the alg orithms w hich w as used to reso lve some pract ical pro blems. Main dif f icu-l
t ies and the questio ns w hich w ill be solved in the future are also show n.
Platform: |
Size: 221184 |
Author: 刘辉 |
Hits:
Description: 提出了微惯性测量单元( MIMU) 在高动态、高过载复杂应用条件下的误差整机标定和补偿方法。首先, 建立了高动态, 高过载复杂应用条件下MIMU 的误差模型, 该模型包括了结构误差, 传感器安装误差和MEMS 惯性传感器在复杂条件对精度影响较大的误差项, 指零位温度漂移、互耦误差、刻度因子非线性和微陀螺加速度效应误差; 根据模型提出了整机标定补偿方法, 该方法可以标定MIMU 的63 个误差系数, 并且不需要对单个传感器进行标定。然后, 介绍了利用最小二乘法对模型进行误差系数标定的方法和步骤, 并对自研的MIMU 进行了标定。(T he entire calibrat ion and compensat ion metho d o f a Miniature Inerial Measur ement U nit( MIMU) in high dy namic and o verload complicate environments w as pr opo sed. First ly, an error model applied to the complicate applicat ion environment s w as established, which consist s o f the structureer rors, installatio n misalignment errors and the erro rs of the MEMS sensors including zero outputdrif t, temperature drif t , crossax is error, no nlinear scale factor erro r and acceler at ion effect err or of
gyr oscope. Based o n the model, the ent ire cal ibrat io n and compensat ion method w as pr opo sed to calibrate 63 er ror co ef ficient s w ithout calibrat ion of each MEMS iner tial sensor separ ately. T hen, thegeneralized least square algor ithm was used to calibrate and calculate the er ror coef ficient s. Finally, a
MIMU was dev elo ped for a f light ex periment and w as calibrated w ith this pro posed method.)
Platform: |
Size: 539648 |
Author: guyan
|
Hits: