CodeBus
www.codebus.net
Search
Sign in
Sign up
Hot Search :
Source
embeded
web
remote control
p2p
game
More...
Location :
Home
Search - nsga ii in matlab
Main Category
SourceCode
Documents
Books
WEB Code
Develop Tools
Other resource
Search - nsga ii in matlab - List
[
matlab
]
NSGA-II
DL : 0
NSGA原代码,很多人在找这个,对搞智能优化很有帮助-NSGA original code, a lot of people looking for this, very helpful to engage in intelligent optimization
Update
: 2025-02-17
Size
: 148kb
Publisher
:
王军
[
matlab
]
NSGA-II
DL : 3
实现了多目标遗传算法NSGA2,并带有详细注释及相关论文,读者只需根据具体问题简要修改,即可使用。-Achieved a multi-objective genetic algorithm NSGA2, with detailed notes and related papers, the reader just a brief specific issues in accordance with changes to use.
Update
: 2025-02-17
Size
: 124kb
Publisher
:
赵爽
[
AI-NN-PR
]
MOEA-NSGA-II
DL : 0
NSGA-II多目标优化的matlab代码-NSGA-II multi-objective optimization matlab code
Update
: 2025-02-17
Size
: 362kb
Publisher
:
gitry
[
matlab
]
NSGA2(MATLAB)
DL : 6
利用MATLAB编写的简单的NSGA2程序 ,实用方便 -Prepared using a simple MATLAB program NSGA2, practical convenience
Update
: 2025-02-17
Size
: 20kb
Publisher
:
最爱爽肤水
[
AI-NN-PR
]
Deb_NSGA-II
DL : 0
基于MATLAB平台的Deb多目标遗传算法之NSGA-II,包含帮助文件-Deb based on MATLAB platform of multi-objective genetic algorithm NSGA-II, contains the Help files
Update
: 2025-02-17
Size
: 168kb
Publisher
:
zangtianlei
[
Mathimatics-Numerical algorithms
]
NSGA-II
DL : 0
MATLAB的NSGA改进后的算法-MATLAB' s NSGA improved algorithm
Update
: 2025-02-17
Size
: 998kb
Publisher
:
vanderveer
[
matlab
]
NSGA-II
DL : 0
This the code for NSGA II in Matlab-This is the code for NSGA II in Matlab
Update
: 2025-02-17
Size
: 153kb
Publisher
:
ramu
[
matlab
]
NSGA-II-Matlab2
DL : 0
最权威版nsga2的matlab版 ,国际EMOO研发小组的成果。-The most authoritative version of nsga2 the matlab version of the results of the international EMOO development team.
Update
: 2025-02-17
Size
: 7kb
Publisher
:
wsf211
[
matlab
]
NSGA_II
DL : 1
A NSGA-II Program in Matlab
Update
: 2025-02-17
Size
: 427kb
Publisher
:
xxx
[
Energy industry
]
NSGA
DL : 1
matlab编写的基于粒子群优化算法的多目标优化,可以处理电力系统优化问题-matlab write PSO-based multi-objective optimization, can handle the power system optimization problems
Update
: 2025-02-17
Size
: 362kb
Publisher
:
jihai77007
[
matlab
]
NSGA-II-in-MATLAB-[www.MatlabSite.com]
DL : 0
MATLAB Code for: Non-dominated Sorting Genetic Algorithm II (NSGA-II) Version 1.1 - November 2011 Programmed By: S. Mostapha Kalami Heris (MatlabSite Member)-MATLAB Code for: Non-dominated Sorting Genetic Algorithm II (NSGA-II) Version 1.1 - November 2011 Programmed By: S. Mostapha Kalami Heris (MatlabSite Member)
Update
: 2025-02-17
Size
: 55kb
Publisher
:
nadem
[
matlab
]
Advance-NSGA-II
DL : 0
改进的NSGA-II的简单例子,包含NSGA-II的基本思想,直接在matlab中就可以运行。-Improve the NSGA- II simple examples, including the NSGA- II, the basic idea of directly can run in matlab.
Update
: 2025-02-17
Size
: 1kb
Publisher
:
王振
[
e-language
]
NSGA-II-in-MATLAB
DL : 0
带精英策略的非支配排序遗传算法matlab 源码-Non- Dominating Sorting Algorithm
Update
: 2025-02-17
Size
: 10kb
Publisher
:
Melody
[
matlab
]
NSGA II
DL : 0
NSGA II algorithm made in matlab
Update
: 2025-02-17
Size
: 8kb
Publisher
:
LAugusto
[
Special Effects
]
e3-08-01-05
DL : 0
Downloads The download link of this project follows. Portfolio Optimization using Classic Methods and Intelligent Methods (PSO, ICA, NSGA-II, and SPEA2) in MATLAB Download
Update
: 2025-02-17
Size
: 289kb
Publisher
:
vinc
[
matlab
]
NSGA
DL : 0
多目标遗传算法是NSGA-II[1](改进的非支配排序算法),该遗传算法相比于其它的多目标遗传算法有如下优点:传统的非支配排序算法的复杂度为 ,而NSGA-II的复杂度为 ,其中M为目标函数的个数,N为种群中的个体数。引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度。采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。(消除了共享参数)。(Multi-objective genetic algorithm is nsga-ii [1] (improved non-dominant sorting algorithm), which has the following advantages compared with other multi-objective genetic algorithms: the complexity of the traditional non-dominant sorting algorithm is, while the complexity of nsga-ii is, where M is the number of objective functions and N is the number of individuals in the population.The introduction of elite strategy to ensure that some good individuals in the evolutionary process will not be discarded, thus improving the accuracy of the optimization results.The comparison operator of crowding degree and crowding degree not only overcomes the defect that NSGA needs to specify the Shared parameter artificially, but also takes it as the comparison standard between individuals in the population, so that individuals in the quasi-pareto domain can uniformly expand to the whole Pareto domain, ensuring the diversity of the population.(eliminating Shared parameters).)
Update
: 2025-02-17
Size
: 16kb
Publisher
:
浅浪
CodeBus
is one of the largest source code repositories on the Internet!
Contact us :
1999-2046
CodeBus
All Rights Reserved.