Welcome![Sign In][Sign Up]
Location:
Search - nu-svc

Search list

[Othersvmmatla3

Description: % 支持向量机Matlab工具箱1.0 - Nu-SVC, Nu二类分类算法 % 使用平台 - Matlab6.5 希望对大家有用
Platform: | Size: 2443 | Author: 黎明 | Hits:

[AI-NN-PRsvm

Description: libsvm is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM regression, and nu-SVM regression. It also provides an automatic model selection tool for C-SVM classification. This document explains the use of libsvm.
Platform: | Size: 295936 | Author: baolij | Hits:

[Othersvmmatla3

Description: % 支持向量机Matlab工具箱1.0 - Nu-SVC, Nu二类分类算法 % 使用平台 - Matlab6.5 希望对大家有用 - Support Vector Machines Matlab Toolbox 1.0- Nu-SVC, Nu classification algorithm of second-class platform- Matlab6.5 hope useful for everyone
Platform: | Size: 2048 | Author: 黎明 | Hits:

[Mathimatics-Numerical algorithmssvm4

Description:  -s svm类型:SVM设置类型(默认0)   0 -- C-SVC   1 --v-SVC   2 – 一类SVM   3 -- e -SVR   4 -- v-SVR   -t 核函数类型:核函数设置类型(默认2)   0 – 线性:u v   1 – 多项式:(r*u v + coef0)^degree   2 – RBF函数:exp(-r|u-v|^2)   3 –sigmoid:tanh(r*u v + coef0)   -d degree:核函数中的degree设置(针对多项式核函数)(默认3)   -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)   -r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)   -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)   -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)   -p p:设置e -SVR 中损失函数p的值(默认0.1)   -m cachesize:设置cache内存大小,以MB为单位(默认40)   -e eps:设置允许的终止判据(默认0.001)   -h shrinking:是否使用启发式,0或1(默认1)   -wi weight:设置第几类的参数C为weight*C(C-SVC中的C)(默认1)   -v n: n-fold交互检验模式,n为fold的个数,必须大于等于2--s svm_type : set type of SVM (default 0) 0-- C-SVC 1-- nu-SVC 2-- one-class SVM 3-- epsilon-SVR 4-- nu-SVR -t kernel_type : set type of kernel function (default 2) 0-- linear: u *v 1-- polynomial: (gamma*u *v+ coef0)^degree 2-- radial basis function: exp(-gamma*|u-v|^2) 3-- sigmoid: tanh(gamma*u *v+ coef0) 4-- precomputed kernel (kernel values in training_instance_matrix) -d degree : set degree in kernel function (default 3) -g gamma : set gamma in kernel function (default 1/k) -r coef0 : set coef0 in kernel function (default 0) -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) -m cachesize : set cache memory size in MB (default 100) -e epsilon : set tolerance of termination criterion (default 0.001) -h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1) -b
Platform: | Size: 17408 | Author: little863 | Hits:

[Algorithmlibsvm3

Description: 台湾林智仁编写的支持向量机开源程序,可用于分类(C-SVC,nu-SVC,one-class SVM)和回归(epsilon-SVR,nu-SVR)。这是最新版本3.0。-Libsvm3.0 is a simple, easy-to-use, and efficient software for SVM classification and regression. It solves C-SVM classification, nu-SVM classification, one-class-SVM, epsilon-SVM regression, and nu-SVM regression. It also provides an automatic model selection tool for C-SVM classification.
Platform: | Size: 576512 | Author: 大木木 | Hits:

[AI-NN-PRlibsvm-master

Description: LIBSVM是台湾大学林智仁(Lin Chih-Jen)教授等开发设计的一个简单、易于使用和快速有效的SVM模式识别与回归的软件包,他不但提供了编译好的可在Windows系列系统的执行文件,还提供了源代码,方便改进、修改以及在其它操作系统上应用;该软件对SVM所涉及的参数调节相对比较少,提供了很多的默认参数,利用这些默认参数可以解决很多问题;并提供了交互检验(Cross Validation)的功能。该软件可以解决C-SVM、ν-SVM、ε-SVR和ν-SVR等问题,包括基于一对一算法的多类模式识别问题。-a simple and easy-to-use support vector machines tool for classification (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR), and distribution estimation
Platform: | Size: 633856 | Author: 郭坦 | Hits:

[AI-NN-PRlibsvm-3.1

Description: LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-type algorithm proposed in this paper: R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a pseudo code there. (how to cite LIBSVM) Our goal is to help users other fields to easily use SVM as a tool. LIBSVM provides a simple interface where users can easily link it with their own programs. Main features of LIBSVM include-LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-type algorithm proposed in this paper: R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a pseudo code there. (how to cite LIBSVM) Our goal is to help users other fields to easily use SVM as a tool. LIBSVM provides a simple interface where users can easily link it with their own programs. Main features of LIBSVM include
Platform: | Size: 1321984 | Author: carl2380 | Hits:

[AI-NN-PRlibsvm-3.22

Description: libsvm-3.22.rar LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-type algorithm proposed in this paper: R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a pseudo code there. (how to cite LIBSVM) Our goal is to help users other fields to easily use SVM as a tool. LIBSVM provides a simple interface where users can easily link it with their own programs. Main features of LIBSVM include-libsvm-3.22.rar LIBSVM is an integrated software for support vector classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution estimation (one-class SVM). It supports multi-class classification. Since version 2.8, it implements an SMO-type algorithm proposed in this paper: R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working set selection using second order information for training SVM. Journal of Machine Learning Research 6, 1889-1918, 2005. You can also find a pseudo code there. (how to cite LIBSVM) Our goal is to help users other fields to easily use SVM as a tool. LIBSVM provides a simple interface where users can easily link it with their own programs. Main features of LIBSVM include
Platform: | Size: 839680 | Author: carl2380 | Hits:

CodeBus www.codebus.net