Welcome![Sign In][Sign Up]
Location:
Search - o2

Search list

[Other resourceMyKmeans

Description: 实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Platform: | Size: 1378 | Author: 阿兜 | Hits:

[Other resourceDSPprogram

Description: 1、(1)32bit乘法的指令解释 (2)volume1的load.asm基础上实现一个 16bit数组的乘法累加的函数,并进行 -o2 / -o3 / 手工优化 2、c环境 C调用汇编函数,汇编函数调用c函数 addarr3(int * arr1, int * arr2, int * arr3, int * arr4, n) //汇编函数,3个数组的对应位置相加,结果放在arr4[n]中, 汇编函数调用C的子函数,它把arr1和arr2相加放到arr3[n]中; addarr2(int * arr1, int * arr2, int * arr3, n)-1, (1) 32bit multiplication instructions explained (2) the load.asm volume1 on the basis of a a 16bit multiplication cumulative array of functions, and-o2 /-o3 / 2 manual optimization, c environment compilation called C function, the compilation function call c function addarr3 (int * arr1. int * arr2, arr3 int *, int * arr4, n) / / compilation function, 3 arrays corresponding location together, the results on arr4 [n], the compilation of the C function call function, arr1 put it together and put arr2 arr3 [n]; addarr2 (int * arr1, int * arr2, int * arr3, n)
Platform: | Size: 19521 | Author: 郭春吉 | Hits:

[Other resourcegpio

Description: gpio驱动 leddrv.c为驱动源程序 writeled.c为应用程序 writeled.c 编译方式 arm-elf-gcc -Wall -O2 -Wl,-elf2flt -o writeled writeled.c leddrv.c 编译方式 arm-elf-gcc -D__KERNEL__ -I你的uClinux目录/linux-2.4.x/include-Wall -Wstrict-prototypes -Wno-trigraphs -O2 -fno-strict-aliasing -fno-common -fno-common -pipe -fno-builtin -D__linux__ -DNO_MM -mapcs-32 -march=armv4 -mtune=arm7tdmi -mshort-load-bytes -msoft-float -DMODULE -c -o leddrv.o leddrv.c
Platform: | Size: 2108 | Author: zhengbo | Hits:

[Other resourcek_medoids

Description: 聚类算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。 这里是MAtlab源代码。
Platform: | Size: 9669 | Author: 烈马 | Hits:

[Embeded-SCM Developtic6416

Description: 主要完成在uc-os2操作系统对dsp的资源控制和调度,包括一些初始化工作等 --It mainly does some resource control and configuration for dsp in uc-o2 operation system, like some initialization.
Platform: | Size: 198420 | Author: yjb_21cn | Hits:

[Embeded-SCM Developtic6416

Description: 主要完成在uc-os2操作系统对dsp的资源控制和调度,包括一些初始化工作等 --It mainly does some resource control and configuration for dsp in uc-o2 operation system, like some initialization.
Platform: | Size: 346112 | Author: yjb_21cn | Hits:

[matlabMyKmeans

Description: 实现聚类K均值算法: K均值算法:给定类的个数K,将n个对象分到K个类中去,使得类内对象之间的相似性最大,而类之间的相似性最小。 缺点:产生类的大小相差不会很大,对于脏数据很敏感。 改进的算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。-achieving K-mean clustering algorithms : K-means algorithm : given the number of Class K, n will be assigned to target K to 000 category, making target category of the similarity between the largest category of the similarity between the smallest. Disadvantages : class size have no great difference for dirty data is very sensitive. Improved algorithms : k-medoids methods. Here a selection of objects called mediod to replace the center of the above, the logo on a medoid this category. Steps : 1, arbitrary selection of objects as K medoids (O1, O2, Ok ... ... Oi). Following is a cycle : 2, the remaining targets assigned to each category (in accordance with the closest medoid principle); 3, for each category (Oi), the order of selection of a Or, calculated Oi Or replace the consumption-E (Or)
Platform: | Size: 1024 | Author: 阿兜 | Hits:

[DSP programDSPprogram

Description: 1、(1)32bit乘法的指令解释 (2)volume1的load.asm基础上实现一个 16bit数组的乘法累加的函数,并进行 -o2 / -o3 / 手工优化 2、c环境 C调用汇编函数,汇编函数调用c函数 addarr3(int * arr1, int * arr2, int * arr3, int * arr4, n) //汇编函数,3个数组的对应位置相加,结果放在arr4[n]中, 汇编函数调用C的子函数,它把arr1和arr2相加放到arr3[n]中; addarr2(int * arr1, int * arr2, int * arr3, n)-1, (1) 32bit multiplication instructions explained (2) the load.asm volume1 on the basis of a a 16bit multiplication cumulative array of functions, and-o2 /-o3/2 manual optimization, c environment compilation called C function, the compilation function call c function addarr3 (int* arr1. int* arr2, arr3 int*, int* arr4, n)// compilation function, 3 arrays corresponding location together, the results on arr4 [n], the compilation of the C function call function, arr1 put it together and put arr2 arr3 [n]; addarr2 (int* arr1, int* arr2, int* arr3, n)
Platform: | Size: 27648 | Author: 郭春吉 | Hits:

[Embeded Linuxgpio

Description: gpio驱动 leddrv.c为驱动源程序 writeled.c为应用程序 writeled.c 编译方式 arm-elf-gcc -Wall -O2 -Wl,-elf2flt -o writeled writeled.c leddrv.c 编译方式 arm-elf-gcc -D__KERNEL__ -I你的uClinux目录/linux-2.4.x/include-Wall -Wstrict-prototypes -Wno-trigraphs -O2 -fno-strict-aliasing -fno-common -fno-common -pipe -fno-builtin -D__linux__ -DNO_MM -mapcs-32 -march=armv4 -mtune=arm7tdmi -mshort-load-bytes -msoft-float -DMODULE -c -o leddrv.o leddrv.c -GPIO driver leddrv.c-driven source code for applications writeled.c way writeled.c compiler arm-elf-gcc-Wall-O2-Wl,-elf2flt-o writeled writeled.cleddrv.c way compiler arm-elf-gcc-- you are D__KERNEL__-I of the uClinux directory/linux-2.4.x/include-Wall-Wstrict-prototypes-Wno-trigraphs-O2-fno-strict-aliasing-fno-common-fno-common-pipe-fno-builtin-D__linux__-- DNO_MM-mapcs-32-march = armv4-mtune = arm7tdmi-mshort-load-bytes-msoft-float-DMODULE-c-o leddrv.o leddrv.c
Platform: | Size: 2048 | Author: zhengbo | Hits:

[matlabk_medoids

Description: 聚类算法:k—medoids 方法。这儿选取一个对象叫做mediod来代替上面的中心 的作用,这样的一个medoid就标识了这个类。步骤: 1,任意选取K个对象作为medoids(O1,O2,…Oi…Ok)。 以下是循环的: 2,将余下的对象分到各个类中去(根据与medoid最相近的原则); 3,对于每个类(Oi)中,顺序选取一个Or,计算用Or代替Oi后的消耗—E(Or)。选择E最小的那个Or来代替Oi。这样K个medoids就改变了,下面就再转到2。 4,这样循环直到K个medoids固定下来。 这种算法对于脏数据和异常数据不敏感,但计算量显然要比K均值要大,一般只适合小数据量。 这里是MAtlab源代码。-err
Platform: | Size: 9216 | Author: 烈马 | Hits:

[Communication-MobileBlueSoleil_Water

Description: 本人的O2一开始也是装不上,最后将问题放在了驱动本身,决定从网上下另外的驱动尝试,结果选择了PDAFANS里面WATER兄汉化的一个驱动,安装后问题解决 下面提供上述的驱动 -O2 my start is not loaded, and finally the problem on the drive itself, a decision from the Internet under the other driver to try, the result has chosen WATER brother PDAFANS inside a Chinese-driven, problem-solving after the installation of the drive to offer the following
Platform: | Size: 372736 | Author: fei | Hits:

[MySQLkdddbc.tar

Description: 自己写的,一套关于Mysql连接池的Cpp库,编译环境为gcc/minwin ,linux环境下可以之用,面对对象的Cpp库,使用方法为kdd::dbio.run().然后就可以调用db_queryer来进行数据库操作-Wrote it myself, a set of Mysql database connection pool Cpp, compiler environment gcc/minwin, linux environment can be used, in the face of the object Cpp library, use the method of kdd:: dbio.run (). And then we can db_queryer call for database operations
Platform: | Size: 2279424 | Author: OTHER | Hits:

[Multimedia DevelopQ8_Real

Description: [转载]RM/RMVB 解碼器for wm5/6 windows media player!!! 本補丁提取自MOTO Q8! 感謝研究者提供! 經親測後 o2 stealth測試可用!!!!! 但好像大多數HTC機不能用!!大家試試!! 使用介紹!!!!!! <<把CAB直接安裝,,,之後開WMP就可以播放了!!!>> 一般640*480,300左右KBS RM/RMVB順暢播放 較高畫質以及AAC音頻有時會比較卡 -[Reprint] RM/RMVB decoder for wm5/6 windows media player!!! This patch extracted from the MOTO Q8! Thank the researchers! Measured by the pro-test can be used after the o2 stealth !!!!! but like most of HTC machines can not be used!! Try U.S.! ! Introduction to use !!!!!! < < to install the CAB directly, and then open WMP can play a general 640* 480,300 !!!> > about KBS RM/RMVB playback smoother high-definition, as well as AAC audio has When more cards
Platform: | Size: 420864 | Author: 雪之寒 | Hits:

[Windows Developch128src

Description: THIS CODE IS NOT A MASTERPIECE, SO DON T EXPECT THAT IT S FULLY OPTIMIZED OR STH. IT S VERY INEFFECTIVE, SLOW AND BUGGY, SO IF YOU HAVE ANY COMMENTS - SEND ME A MAIL TO copyhandler@o2.pl, OR BETTER - SUBSCRIBE THE DISCUSSION FORUM CHDEV (AS STATED IN README FILE OF THE PROGRAM). ANY HELP OR COMMENTS WOULD BE HIGHLY APPRECIATED.-THIS CODE IS NOT A MASTERPIECE, SO DON T EXPECT THAT IT S FULLY OPTIMIZED OR STH. IT S VERY INEFFECTIVE, SLOW AND BUGGY, SO IF YOU HAVE ANY COMMENTS- SEND ME A MAIL TO copyhandler@o2.pl, OR BETTER- SUBSCRIBE THE DISCUSSION FORUM CHDEV (AS STATED IN README FILE OF THE PROGRAM). ANY HELP OR COMMENTS WOULD BE HIGHLY APPRECIATED.
Platform: | Size: 761856 | Author: sncelsve | Hits:

[Special Effects300

Description: 了一种基于融合和广义高斯模型的遥感影像变化检测算法。该算法融合差值影像和比值影像的结 果构造差异影像,然后运用灰度形态学对差异影像进行顾及空间邻域关系的处理,再对处理后的结果运用广义高 斯分布模型估计变化与非变化像元的概率密度参数,最后采用改进的O2 算法计算最佳分割阈值,提取变化区域。 实验结果表明,所提出的变化检测算法稳健、高效,具有较大的实用价值。-0LDI TCTUG TGUIUNVI C MLCNEU WUVUMVD5N CTTG5CML 5X GUB5VU IUNIDNE DBCEUI YCIUW 5N XFID5N CNW EUNUGC6 3CFII B5WU6( 33/)7 0LDI BUVL5W M5NIVGFMVI WDXXUGUNMU DBCEU YK XFIDNE VLU GUIF6VI 5X IFYVGCMVD5N 5TUGCVD5N CNW WD8DID5N 5TUGCVD5N,VLUN,TG5MUIIUI WDXXUGUNMU DBCEU YK EGCK B5GTL565EK,CECDN,UIVDBCVUI VLU TG5YCYD6DVK WUNIDVK 5X MLCNEU TDQU6I CNW N5:MLCNEU TDQU6I YK 33/,XDNC66K,MC6MF6CVUI VLU 5TVDBC6 VLGUIL56W YK VLU DBTG58UW O2 CTTG5CML CNW UQVGCMVI VLU MLCNEUW GUED5NI7 .QTUGDBUNVI IL5Z VLCV VLU BUVL5W 5X XFID5N CNW 33/ DI I56DW CNW UXXDMCMD5FI,ZLDML LCI TGUXUGCY6U CTT6DMCVD5N 8C6FU7
Platform: | Size: 304128 | Author: liangr | Hits:

[Waveletbato2

Description: computation multiwavelet transform an image (BAT O2 multiwavelet transform)
Platform: | Size: 1024 | Author: mohammadi | Hits:

[AlgorithmTurboCSim

Description: Turbo code corrected simulation in C++. Compile under Windows or Linux "g++ -O2 -o turbo.exe turbo.cpp random.cpp".-Turbo code corrected simulation in C++. Compile under Windows or Linux "g++ -O2 -o turbo.exe turbo.cpp random.cpp".
Platform: | Size: 7168 | Author: Lukasz | Hits:

[OtherLEACH

Description: 关于无线传感器网络的路由算法研究,在能量均衡上的经典LEACH算法,用matlab进行的仿真,能够实现!-Abstract: The distributed wireless sensor net work and the technol ogy of wireless communicati on could realize the subsidence monit oring and measuring in coalmine goaf . One of the i mportant researcheswas r outing p r ot ocol in wireless sens or net works . Based on the design idea of the LEACH routing p r ot ocol for the wireless sens or net work, taking the net work communicati on capacity t o be increased and the re2 dundant data trans missi on t o be reduced as the target, according t o the available LEACH i mp r oved calculati on method, an i mp roved layer r outing p rot ocol algorithm was p rovided . With the introducti on of the forced cluster head and according t o the data relativity of the monit o2 ring and measuring variati on for the unit p itch pointswithin the continued ti me, the redundant data transmissi on quantitywas reduced . A comparison si mulati on on the net work existing ti me of the i mp roved algorithm for the t wo LEACH p rot ocolswas conduced . The
Platform: | Size: 2048 | Author: 李博宁 | Hits:

[VC/MFCO2Note

Description: O2 Note - change and edit note from o2mania
Platform: | Size: 379904 | Author: Jk2 | Hits:

[OtherO2源代码

Description: 氧气气体检测仪源代码,已经测试完毕,很实用!!(Oxygen portable gas detector)
Platform: | Size: 16384 | Author: JDWZ123 | Hits:
« 12 3 »

CodeBus www.codebus.net