Location:
Search - pcm fft
Search list
Description: AT91RM9200控制PCM编码芯片AIC10
Platform: |
Size: 186772 |
Author: weiwenhao |
Hits:
Description: AT91RM9200控制PCM编码芯片AIC10-AT91RM9200 chip AIC10 control PCM coding
Platform: |
Size: 280576 |
Author: weiwenhao |
Hits:
Description: 格式 [sqnr,a_quan,code]=u_pcm(a,n)
输入样值序列a 、量化电平数目n, 程序计算量化间隔、进行均匀量化、进行编码、计算量化信噪比, 返回量化信噪比squn、编码前的量化序列a_quan、编码后的码序列code。
-Format [sqnr, a_quan, code] = u_pcm (a, n) input sample value sequence a, the number of quantization levels n, the calculation procedures to quantify interval, the uniform quantization, coding, computing quantization noise ratio, return quantization noise ratio squn, to quantify the pre-coding sequence a_quan, coding sequences after the code.
Platform: |
Size: 1024 |
Author: wx |
Hits:
Description: 这是本人做的一个,基于VB的一个音频文件FFT计算与频谱显示的软件。包括源代码,是个不错的源代码。-This is one I do, based on the VB of an audio file FFT calculation and spectrum display software. Including source code, is a good source code.
Platform: |
Size: 6990848 |
Author: 余海斌 |
Hits:
Description: function pitchwatch(x,Ts)
Plot the pitch keys.
pitchwatch(x,[Ts])
:: Syntax
The array x is the input signal and Ts is the (optional) sampling period.
Example on use: [x,Fs] = wavread( Hum.wav )
pitchwatch(x,1/Fs)
:: Information
Make your own wav-files with the Windows Sound Recorder. Choose the attributes
PCM 8000Hz, 16bit, Mono when saving the wav-file-function pitchwatch(x,Ts)
Plot the pitch keys.
pitchwatch(x,[Ts])
:: Syntax
The array x is the input signal and Ts is the (optional) sampling period.
Example on use: [x,Fs] = wavread( Hum.wav )
pitchwatch(x,1/Fs)
:: Information
Make your own wav-files with the Windows Sound Recorder. Choose the attributes
PCM 8000Hz, 16bit, Mono when saving the wav-file
Platform: |
Size: 99328 |
Author: michael4u2345 |
Hits:
Description: 本设计主要基于Visual Studio 2010编译环境下,涉及到多线程的设计,创建了两个线程,其中一个线程MP3的播放线程,另一个线程是频谱的分析线程,播放线程总是通过解码器获取数据,频谱线程根据当前播放的时间获取到正在播放的PCM数据,使用FFT计算后绘图显示。MP3解码则由由libmad开源解码库完成。-This design is mainly based on the build environment in Visual Studio 2010, related to the multi-threaded design, create two threads, one thread MP3 playback thread, another thread is a spectrum analysis of thread play thread is always to get data through the decoder , spectrum to obtain the thread according to the current playback time is playing PCM data, and graphics using the FFT calculation. MP3 decoding from by libmad open source decoding library.
Platform: |
Size: 641024 |
Author: 能能 |
Hits:
Description: 产生一正态分布序列 经过pcm编码、PCM解码、计算量化信噪比、设置信道误码率
-Generating a normal sequence after pcm encoding, PCM decoding, computing quantization noise ratio, set the channel error rate
x = randn (1,1000) generating a normal sequence
xf = fft (x, 256) 1024 data points, that is a signal sampling data to process 1024 points
d = x
subplot (2,1,1) normal draw sequence time domain and frequency domain plots
plot (x)
title ( length of 1000 standard normally distributed random time-domain waveform signal )
subplot (2,1,2)
plot (abs (xf))
xlabel ( Frequency/Hz )
ylabel ( amplitude )
......
......
Platform: |
Size: 2048 |
Author: 高山 |
Hits:
Description: 首先对输入音频PCM信号进行时频分析,决定MDCT的长度,即加窗,然后进行MDCT变换;同时对原始音频信号要进行FFT分析。两种变换的频谱系输入给心理声学模型单元,MDCT系数用于噪声掩蔽计算,H可结果用于音调掩蔽特性计算,共同构造总的掩蔽曲线。然后根据MDCT系数及掩蔽曲线,对频谱系数进行线性预测分析用LPC(Linear Prediction Coefficience,线性预测系数)表示频谱包络,即基底曲线(Floor Curve);或通过线性分段逼近方式获得基底曲线。从MDCT系数中去掉频谱包络则得到白化的残差频谱(Residue),由于残差频谱波动范围明显变小,从而降低量化误差。之后可以选择是否采用声道耦合(Channel Coupling)技术进一步降低冗余度,耦合主要是将左右声道数据从直角坐标映射到平方极坐标;最后对白化的残差信号有效地以矢量量化表示。最后将要传输的各种信息数据按Vorbis定义的包格式组装,形成Vorbis压缩码流。-First, the input audio PCM signal time-frequency analysis to determine the length of the MDCT, that windowing, then MDCT transform while the original audio signal to FFT analysis. Two Transformations spectral line input to the psychoacoustic model unit, MDCT coefficients used to calculate the noise masking, H can be used to tone masking characteristic calculation result, the overall structure of the common masking curve. Then according to the MDCT coefficient and the masking curve, spectrum analysis using linear prediction coefficients LPC (Linear Prediction Coefficience, linear prediction coefficients) represent the spectral envelope, ie the base curve (Floor Curve) or approaching the base curve obtained by linear segments. Removed the MDCT coefficients in the spectral envelope of the residual spectrum obtained albino (Residue), since the fluctuation range of the residual spectrum significantly smaller, thereby reducing the quantization error. Then you can choose whether to use cha
Platform: |
Size: 505856 |
Author: 张小 |
Hits: