Description: 四次及四次以下多项式拟和程序,可在c或c++环境下运行-Polynomial fit arithmetic witch could been run in C or C++ environment Platform: |
Size: 1024 |
Author:傅立叶 |
Hits:
Description: 本程序是基于非等距节点的正交多项式的最小二乘法拟合算法,该算法已经在vc++6.0下调试通过,经多次验证,本算法的拟合误差较小。-This procedure is based on equidistant nodes of non-orthogonal polynomial least squares fit algorithm, which has been in vc++6.0 through debugging, after repeated verification, the algorithm of fitting error is small. Platform: |
Size: 1024 |
Author:张科 |
Hits:
Description: 切比雪夫 用切比雪夫多项式逼近已知函数
勒让德 用勒让德多项式逼近已知函数
帕德 用帕德形式的有理分式逼近已知函数
lmz 用列梅兹算法确定函数的最佳一致逼近多项式
ZJPF 求已知函数的最佳平方逼近多项式
方舟子 用傅立叶级数逼近已知的连续周期函数
事实上的部队 离散周期数据点的傅立叶逼近
SmartBJ 用自适应分段线性法逼近已知函数
SmartBJ 用自适应样条逼近(第一类)已知函数
multifit 离散试验数据点的多项式曲线拟合
LZXEC 离散试验数据点的线性最小二乘拟合
ZJZXEC 离散试验数据点的正交多项式最小二乘拟合-Chebyshev Chebyshev polynomial approximation with a known function of Legendre Legendre polynomial approximation of a known function with Pade Pade form of rational fraction approximation of the best known function is consistent with the function of determining lmz Lie Meizi algorithm best square approach polynomial ZJPF seek known function approximation polynomial approximation Fang continuous cycle function known DFF discrete periodic data points Fourier Fourier series approximation of a known function approximation SmartBJ SmartBJ adaptive piecewise linear method adaptive spline approximation (first class) known function multifit discrete experimental data points polynomial curve fitting LZXEC discrete linear least squares fit of the experimental data points ZJZXEC discrete experimental data points orthogonal polynomials least squares fitting Platform: |
Size: 8192 |
Author:houguoq |
Hits:
Description: 曲线拟合是图像分析中非常重要的描述符号。最常用的曲线拟合方法是最小二乘法,然而一般的最小二乘法有一定的局限性,已经有不少学者对其进行了一些改进。进一步对最小二乘法进行改进,提出一种新的分段直线拟合算法来代替多项式曲线拟合,以达到简化数学模型的建立和减少计算的目的,使其能够更好地对点序列进行拟合。(Curve fitting is a very important descriptor in image analysis,the most commonly used curve fitting method is least-squares method.But ordinary least-squares method has some limitations,and there are many scholars have made study of improving it.The authors made further improvement on least-squares method and proposed a new piecewise linear fitting algorithm instead of polynomial curve fitting.The new algorithm achieves the goal of simplifying the mathematical model,reducing the calculation,and makes it better to fit point sequence.) Platform: |
Size: 191488 |
Author:tintintin
|
Hits: