Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - possion equation
Search - possion equation - List
用有限元法求解三角形形区域上的Possion方程-using the finite element method triangle-shaped region of Possion equation
Update : 2008-10-13 Size : 1.94kb Publisher : zhouun

fem solver for Possion equation
Update : 2025-02-19 Size : 5kb Publisher : frank wang

用有限元法求解三角形形区域上的Possion方程-using the finite element method triangle-shaped region of Possion equation
Update : 2025-02-19 Size : 2kb Publisher : zhouun

DL : 0

Update : 2025-02-19 Size : 196kb Publisher : holysword

用有限元法求解三角形形区域上的Possion方程-Using finite element method to solve the triangle-shaped region of Possion equation
Update : 2025-02-19 Size : 2kb Publisher : weilixiao

利用1五点差分格式解决的方程为Possion方程-Use of a five-point difference scheme to solve the equation for the Possion equation
Update : 2025-02-19 Size : 1kb Publisher : 袁杰

possion方程的fem求解,生成刚度阵。欢迎提出宝贵意见。-fem for solving the possion equation ,stiffness matrix is generated. Welcome to give valuable advice.
Update : 2025-02-19 Size : 1kb Publisher : 王海

DL : 1
有限元求解柏松方程。本文采用FORTRAN语言编制程序。程序中大部分变量采用有名公共区存储方式存储,这样可以减少内存占用量。 IFG:生成有限元网格信息,即元素节点局部编码与总体编码对照表,节点实际坐标,边界节点编码与边界点上的已知值 GKD:生成总刚一维存储对角元的地址,计算总刚一维存储长度 FIXP:设置已知节点函数值 GK(NI,NJ,ADJ,AIJ):单元刚度矩阵计算 GF(NI,N,M,LE,YI,FE):单元列阵的计算 AK(I,J,AIJ):总刚度矩阵元素迭加 QEB:总刚度矩阵和总列阵合成 BDE:边界条件处理 SOLGS:Gauss-Seidel迭代法求解方程组 UDIFF(NI,NFLAG,UDIF,LE,ADJ):标准元素内形状函数导数计算 DIFF:节点上 , 加权平均 -In this program, FEM was used to solve the possion equation. It is implemented through FORTRAN
Update : 2025-02-19 Size : 532kb Publisher : liang

有限元求解柏松方程。本文采用FORTRAN语言编制程序。程序中大部分变量采用有名公共区存储方式存储,这样可以减少内存占用量。 IFG:生成有限元网格信息,即元素节点局部编码与总体编码对照表,节点实际坐标,边界节点编码与边界点上的已知值 GKD:生成总刚一维存储对角元的地址,计算总刚一维存储长度 FIXP:设置已知节点函数值 GK(NI,NJ,ADJ,AIJ):单元刚度矩阵计算 GF(NI,N,M,LE,YI,FE):单元列阵的计算 AK(I,J,AIJ):总刚度矩阵元素迭加 QEB:总刚度矩阵和总列阵合成 BDE:边界条件处理 SOLGS:Gauss-Seidel迭代法求解方程组 UDIFF(NI,NFLAG,UDIF,LE,ADJ):标准元素内形状函数导数计算 DIFF:节点上 , 加权平均 -In this program, FEM was used to solve the possion equation. It is implemented through FORTRAN
Update : 2025-02-19 Size : 530kb Publisher : liang

DL : 0
a book for solve possion equation by employing matlab program. It is Newton Raphson method which is famous for quick processiong
Update : 2025-02-19 Size : 120kb Publisher : Jing

实现泊松方程图像融合算法,用VC++实现的基础程序-possion equation
Update : 2025-02-19 Size : 510kb Publisher : 王子卿

经典泊松方程的matlab数值求解程序代码。-Possion equation numberical sover code using matlab.
Update : 2025-02-19 Size : 227kb Publisher : 吴涛

matlab 有限元编程实例,关于possion方程求解-matlab finite element programming examples, on the possion equation
Update : 2025-02-19 Size : 1kb Publisher : 李蒙

基于comsol multiphysics软件平台,输入参数即可求解泊松方程。-Comsol multiphysics software platform based on the input parameters to solve the Poisson equation.
Update : 2025-02-19 Size : 43kb Publisher : 陈福美

DL : 0
用matlab 实现求二维泊松方程解的过程-Seeking to achieve with two-dimensional Poisson equation matlab solution process
Update : 2025-02-19 Size : 3kb Publisher : 王娟

解二维possion方程,利用pcg方法求解第一类边值问题-Solution the dimensional possion equation, using the pcg method for solving the First Kind Boundary
Update : 2025-02-19 Size : 1kb Publisher : tonytangtang

泊松方程的中心差分求解,可以直接画出图。-Central difference solving the Poisson equation, can be directly drawn map.
Update : 2025-02-19 Size : 1kb Publisher : wuruiqian

possion方程有限元求解,可直接画出图-possion equation finite element solution can be directly drawn diagram
Update : 2025-02-19 Size : 2kb Publisher : wuruiqian

利用传统有限元方法计算二维possion 方程的特征值问题,网格采用的是三角网格,由matlab 的pdetool产生,一次多项式近似-Using traditional two-dimensional finite element method possion equation eigenvalue problem, the grid uses a triangular mesh is generated by the matlab pdetool, a polynomial approximation
Update : 2025-02-19 Size : 1kb Publisher : 吕茂辉

求解泊松方程,通过差分法将泊松方程建立为线性方程组,得到稀疏矩阵,通过GS迭代法求解线性方程组,得到泊松方程的特解。-Solving Poisson equation, difference method will be established by linear equations Poisson equation, sparse matrix, solving linear equations by GS iterative method to obtain a particular solution of Poisson s equation.
Update : 2025-02-19 Size : 3kb Publisher : 剑客
« 12 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.