Welcome![Sign In][Sign Up]
Location:
Search - ps0

Search list

[OtherPS0

Description: nds roms pso补丁-nds roms pso patch
Platform: | Size: 40960 | Author: hjz | Hits:

[AI-NN-PRPS0-SVR

Description: :针对发酵过程中生物参数难以实时在线测量的问题,建立了用于生物参数状态预估的 支持向量机软测量模型。考虑到该支持向量回归(SVR)模型的复杂性和冷化特征取决于其三 个参数 ,c, 能否取到最优值,采用粒子群优化(PSO)算法实现对参数 ,c, 的同时寻优。在 此基础上,以饲料用 .甘露聚糖酶为对象,建立了基于PSO—SVR的发酵过程产物浓度状态预估 模型。发酵罐控制结果表明:该模型具有很好的学习精度和泛化能力,可实现对 .甘露聚糖酶 产物浓度的实时在线预估。-In view of the hardship to get real—time and on—line biological parameters in fermentation process,a soft sensor model based on support vector machines is established for estimating the bio— logical parameters.The complexity and generalization performance of the support vector regression (SVR)model depend on a good setting of the three parameters ,c, .An algorithm called parti— cle swarm optimization(PSO)is applied to optimize the three parameters synchronously.Based on the proposed method,a PSO—SVR model is developed to estimate the products concentration of beta— mannanase for feedstuf.The control results of fermenter show that the state estimation model based on PSO·-SVR has good learn ing accuracy and generalization perform ance SO as to obtain the real·-time and on—line estimation for products concentration of beta—mannanase.
Platform: | Size: 231424 | Author: 11 | Hits:

[File Formatdsad

Description: :智能算法如粒子群算法已被应用于PID控制器的参数优化,以弥补传统优化方法容易产生振荡和较大超调量 的不足,但是粒子群算法存在易于早熟的缺点,在分析量子粒子群算法的基础上,提出了使用量子粒子群算法优化PID控 制器的参数。为了兼顾控制系统的各项性能指标,根据控制器的实际要求对各项指标进行加权作为算法的目标函数,对 PID控制器进行多目标寻优。通过2个传递函数实例,分别使用z—N、粒子群算法和量子粒子群算法进行了PID控制器 参数优化设计,并对结果进行了分析。-Abstract:Heuristics such as particle swarnl optimization is employed to enhance the capability of traditional techniques, which is easy to produce surge and big overshoot,but PS0 may be trapped in the local optima of the objective and lead to poor performance. This paper propesed the quantum-behaved particle 8wsl in optimization for the parameter optimization of PID controller. A fitness function containing performance indexes Was defined and the algorithm Was used in multi-object optimization of PID controllers. Two examples were given to illustrate the design procedure and exhibit the effectiveness of the proposed method via tomo parison study with the existing Z—N and PSO approaches.
Platform: | Size: 380928 | Author: dhskja | Hits:

[File Formatgfsdgfsds

Description: :文中提出一种改进的Pso优化算法,并将该算法应 用于水轮发电机组PID调速器参数的优化设计,以水轮发 电机组转速偏差的ITAE指标作为改进PsO优化算法的适应 度函数。以我国某水电站的真实数据对经过优化后的PID 拄制规律进行计算机仿真。仿真结果表明利用改进Ps0优 化算法优化的PID控制规律能有效改善孤网运行条件下水 轮机调节系统过渡过程的动态性能。-An improved PSO algo—fhm wa‘presented and applicd to 叩timal the pⅢ gains tuning of hydrau¨c turbogenera【ors speed govemor The ITAE criterion of hydraulic㈨№generators 8peed errors was taken as the ntness function of the improved PS0 alg甜mm The digital sirnulatlon result8 perf0删ed on an acmal hydropower pl蜘t ln Chjna 1ndkate山at the PID coⅡtr01 Iaw optimised by the improved PS0 algoritllm can effectively imProve the dynamic perfonnance of hydraulic transiems with fast response and s订ong rObusmess especiany On ls01a【ed operation condidons
Platform: | Size: 324608 | Author: dhskja | Hits:

[OtherPS0-SVR

Description: 支持向量机是建立在统计学习理论基础上的通用学习方法,它可较好地解决以往 很多学习方法的小样本、非线性、过学习、高维数、局部极小点等实际问题。笔者利用支持向量回归理论 和方法,建立支持向量机的预测模型,并利用winSVM 和MATLAB 软件进行了实例预测,与二次回归 预测值相比较,支持向量机预测模型具有更好的预测精度,且有很强的推广能力。-Support vector regression data
Platform: | Size: 232448 | Author: wang | Hits:

[matlabPS0-TSP

Description: 多目标问题,粒子群优化算法,解决单旅行商问题-Multi-objective problem, particle swarm optimization algorithm to solve the traveling salesman problem alone
Platform: | Size: 6144 | Author: 路婷 | Hits:

CodeBus www.codebus.net