Welcome![Sign In][Sign Up]
Location:
Search - recognition numeral

Search list

[GDI-Bitmap联机字符识别

Description: 联机字符识别:联机手写数字识别,联机数字、英文字符及汉字识别-online character recognition : on-line handwritten numeral recognition, on-line statistics, English and Chinese character recognition
Platform: | Size: 327680 | Author: 丁俊 | Hits:

[Graph Recognizeshouxieshibie

Description: 支持手写数字识别及训练的程序源码,可以训练识别0-9的数字,有图形界面。-support handwritten numeral recognition and training program source code, can be trained to identify the figures 0-9, graphics interface.
Platform: | Size: 4853760 | Author: lm | Hits:

[Graph RecognizeDemo-Mnist

Description: 基于神经网络的手写数字识别的源代码,绝对能够正常编译并运行!-based on neural network handwritten numeral recognition of the source code is absolutely normal to compile and run!
Platform: | Size: 207872 | Author: 田巾 | Hits:

[Graph RecognizeNearestRecognation

Description: 程序实现了.net环境下,C++语言的手写数字识别,程序对手写数据进行了去边框处理,采用最近邻法进行了分类-achieved with the program. Net environment, the C language handwritten numeral recognition, procedures for handwritten data to the frame, using nearest neighbor method of classification
Platform: | Size: 2330624 | Author: 江南 | Hits:

[Software EngineeringadapterSystemPaper

Description: 论文标题:自适应模糊系统在手写体数字识别中的应用研究 作者:张镭 作者专业:计算机软件人工智能 导师姓名:黄战 授予学位:硕士 授予单位:暨南大学 授予学位时间:19990501 论文页数:59页 文摘语种:中文文摘 分类号:TP18 TP391.4 关键词:手写体数字 自适应 模糊逻辑 神经网络 模式识别 摘要:该文针对模式识别的特点,构造了适合于模式识别问题的自适应模糊系统,对三种不同学习算法加以改进,在手写全数字识别上对分类器进行了实现,并与采用BP算法训练的三层前馈神经网络分类器相比较,分析其优劣.仿真实验表明,在该文的样本集条件下,自适应模糊分类吕的识别性能优于神经网络分类器,这充分体现了自适应模糊技术用于数字识别的优越性和潜力.-thesis entitled : adaptive fuzzy system in a handwritten numeral recognition of applied research Author : Zhang Lei professional author : artificial intelligence computer software instructor Name : Huang war conferred degrees : Master award units : Jinan University conferred degrees : 19990501 page thesis : Abstracts 59 languages : Chinese Digest Key words : TP18-image Keywords : handwritten digital adaptive fuzzy logic neural network pattern recognition Abstract : In this paper the characteristics of pattern recognition, suitable for the construction of adaptive pattern recognition fuzzy systems, three different learning algorithm to improve the handwriting recognition on digital classification of the device to achieve, BP and with a three-tiered training algorithm for neural network clas
Platform: | Size: 4194304 | Author: 成东 | Hits:

[Special EffectsshouxieshuzishibiedeFisherpanbie

Description: 脱机字符识别需要建立手写样本库,但由于作者水平有限,就不介绍实例了.这是脱机字符识别中的手写数字识别的Fisher判别.-Offline Character Recognition need handwriting sample database, but because the author is limited, and not on the case. This is offline character recognition of handwritten numeral recognition of Fisher.
Platform: | Size: 8411136 | Author: 456 | Hits:

[Special EffectsDigitRecog

Description: 脱机字符识别__手写数字识别之模板匹配法-Offline character recognition of handwritten numeral recognition __ template matching method
Platform: | Size: 536576 | Author: jackymeng | Hits:

[Graph RecognizehandWritingRecoginition

Description: Java编写的手写数字识别器。可以识别一般人的手写数字字体,识别率达到80%。-Java prepared handwritten numeral recognition. Most people can identify the handwriting digital fonts, the recognition rate of 80.
Platform: | Size: 22528 | Author: huzhenxing810827 | Hits:

[Graph Recognizenumber

Description: 在matlab平台下开发的对手写数字识别代码,-In matlab platform developed under the code of handwritten numeral recognition,
Platform: | Size: 1024 | Author: 解梅 | Hits:

[Graph RecognizePCAshuzishibie

Description: 用PCA进行手写数字识别,主要是用Matlab实现了原始图像的预处理,进而分别采用传统的PCA方法、改进的PCA算法和2维PCA算法进行了数字识别。-PCA carried out using handwritten numeral recognition, is mainly used Matlab realize the original image preprocessing, and then using the traditional PCA methods, improved PCA algorithm and 2-D PCA algorithm of digital identification.
Platform: | Size: 8192 | Author: xulei | Hits:

[Graph Recognizerecognisechar

Description: 通过本程序可以实现对手写体数字的识别,其识别率比较高-Can be achieved through this procedure for handwritten numeral recognition, the recognition rate is relatively high
Platform: | Size: 9216 | Author: xueling | Hits:

[Graph Recognizerecognition

Description: 数字识别源代码,包括图片预处理,分割,特征提取,以及数字识别等整个过程。-Numeral recognition source code, including the image preprocessing, segmentation, feature extraction, and digital identification, such as the whole process.
Platform: | Size: 191488 | Author: Robert | Hits:

[Graph Recognizesss

Description: 手写数字识别,提取数字骨架,划直线和该骨架相交,取交点数和数字端点为特征向量.建立特征库进行匹配-Handwritten numeral recognition, extraction digital skeleton designated intersection of a straight line and the skeleton, cross check points and digital endpoint for the eigenvector. To establish the characteristics of the Treasury match
Platform: | Size: 1024 | Author: 黄超 | Hits:

[AI-NN-PRHandwrittenDigitRecognitionBasedOnBPNeuralNetwork.

Description: 详细说明了如何实现基于bp神经网络的手写数字识别。神经网络对于参数的设置是敏感的,尤其是隐藏层的单元个数,本文列出了一系列bp神经网络的应用的参数设置。结果表明,可以实现较好的模式识别功能-Detailed description of how to realize bp neural network-based handwritten numeral recognition. Neural network for parameter setting is sensitive, especially the number of hidden layer units, the paper sets out a series of bp neural network applications, parameters setting. The results show that pattern recognition can be achieved better functional
Platform: | Size: 1120256 | Author: 胡存英 | Hits:

[JSP/JavaJava

Description: 用Java编写的手写数字识别器源代码。能够对手写数字有很好的识别能力。经过试验,适应性还是比较强的-Using Java prepared handwritten numeral recognizer source code. Able to handwritten numeral recognition has a very good. After testing, adaptation is still relatively strong
Platform: | Size: 28672 | Author: 小兔兔牙 | Hits:

[AI-NN-PRhandwritte

Description: 支持向量机的手写数字识别,绝对原创,识别率100%-SVM handwritten numeral recognition, absolutely original, 100 percent recognition rate
Platform: | Size: 204800 | Author: 王新 | Hits:

[Graph Recognize200572811235798

Description: 本文论述并设计实现了一个脱机自由手写体数字识别系统。文中首先对待识别数字的预处理进行了介绍,包括二值化、平滑滤波、规范化、细化等图像处理方法;其次,探讨了如何提取数字字符的结构特征和笔划特征,并详细地描述了知识库的构造方法;最后采用了以知识库为基础的模板匹配识别方法,并以MATLAB作为编程工具实现了具有友好的图形用户界面的自由手写体数字识别系统。实验结果表明,本方法具有较高的识别率,并具有较好的抗噪性能-In this paper, and designed to achieve a free offline handwritten numeral recognition system. First, the identification number of the preconditioning treatment were introduced, including binarization, smoothing filtering, standardization, refinement, such as image processing method Secondly, to explore how to extract the number of character strokes of structural features and characteristics, and described in detail Knowledge of the construction method Finally the use of a Knowledge-based template matching method to identify and MATLAB as a programming tool to achieve with a friendly graphical user interface of free handwritten numeral recognition system. The experimental results show that this method has higher recognition rate, and has better anti-noise performance
Platform: | Size: 1224704 | Author: wangjinfeng | Hits:

[Graph Recognizerecognition

Description: 用VC开发联机数字、英文字符及汉字识别、人脸的检测与定位、图像的纹理分析方法、手写数字识别之模板匹配法等识别方法代码,均通过调试运行,希望对大家有所帮助-VC-line with the development of the number of English characters and Chinese character recognition, face detection and location, image texture analysis, handwritten numeral recognition is template matching methods, such as identification codes, are run through the debugger, I hope all of you to help
Platform: | Size: 15167488 | Author: hhs | Hits:

[Graph RecognizeHandwritten_numeral_recognition_of_the_template_ma

Description: 手写汉字识别,本文采用模板匹配的方法,进行识别,模板匹配方法的通用性大家都很了解,你可以在本代码的基础上改善新的功能-Handwritten Chinese character recognition, this paper adopts the template matching method, identification, template matching method versatility are all too familiar, you can code on the basis of this new functionality to improve the
Platform: | Size: 537600 | Author: tianjinquan | Hits:

[matlabCharacter-Recognition(Lib-SVM)

Description: 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。- Support Vector Machine (SVM) is a new machine learning technique in recent years developed based on statistical learning theory (SLT). It wins popularity due to many attractive features and emphatically performance in the fields of nonlinear and high dimensional pattern recognition. The theory and algorithm of SVC is studied at first, then, simulation is to recognize handwritten numeral with the Lib-SVM toolbox. At last, we study the result, which shows that the SVC can do the classification problem with good performance, shorter operation time and is more suitable for real-time implementation.
Platform: | Size: 1155072 | Author: 任修齐 | Hits:
« 12 3 4 5 6 7 8 9 10 ... 17 »

CodeBus www.codebus.net