Location:
Search - runge matlab
Search list
Description: 用matlab编写的用于求微分方程解的方法,实现的是Runge-kutta法
Platform: |
Size: 87820 |
Author: 左玉知 |
Hits:
Description: 1、用MATLAB软件掌握梯形公式、辛普森公式和蒙特卡罗方法计算数值积分。 2、通过实例学习用数值积分和数值微分解决实际问题。-1, using MATLAB software have trapezoidal formula, Simpson formula and Monte Carlo numerical integration method. 2, through examples of learning to use numerical integration and numerical differential solve practical problems.
Platform: |
Size: 34816 |
Author: 葛林 |
Hits:
Description: 用matlab编写的4阶R-K程序。对于仿真可能有所帮助。-using Matlab prepared by the four bands R-K procedure. For the simulation might be helpful.
Platform: |
Size: 6144 |
Author: 作风小 |
Hits:
Description: 数值类综合算法
常用数值计算工具包(龙贝格算法、改进欧拉法、龙格库塔方法、复合辛普森),Matlab数学建模工具箱(以及众多实例)。
常用算法:如Floyd算法、分治算法、动态规划、组合算法、贪婪算法-composite numerical algorithm commonly used numerical Kit (Romberg algorithm, improved Euler, Runge Kutta method composite Simpson), Matlab mathematical modeling toolkit (and the many examples). Common algorithms : algorithms such as Floyd, the partition algorithms, dynamic programming, algorithm, greedy algorithm
Platform: |
Size: 1452032 |
Author: 罗鹏魁 |
Hits:
Description: 这是比例导引的MATLAB程序,其中龙格库塔积分的程序很简单且通用性强-This is the proportion of MATLAB guided procedures, which Runge Kutta integration process is simple and versatile.
Platform: |
Size: 5120 |
Author: |
Hits:
Description: 龙格库塔法解决微分方程Mathematica编译实现。可以解决微分方程,四阶。-Runge- Kutta method to solve differential equations Mathematica compiler to achieve. Differential equations can be solved, four bands.
Platform: |
Size: 165888 |
Author: oscar |
Hits:
Description: 4阶龙格--库塔法解常微分方程,比较好用,希望大家尝试.-4-order Runge-Kutta method solution of ordinary differential equations, more useful, I hope everyone try.
Platform: |
Size: 1024 |
Author: 王明 |
Hits:
Description: 动态系统仿真例子,使用matlab语言,四阶龙格-库塔发-Dynamic system simulation example, the use of matlab language, fourth-order Runge- Kutta-fat
Platform: |
Size: 3072 |
Author: 扬之江 |
Hits:
Description: 运用龙格库塔算法求解朗之万方程,进而实现随机共振系统-The use of Runge-Kutta algorithm for solving Langevin equation, and then the realization of stochastic resonance systems
Platform: |
Size: 3072 |
Author: waiwai |
Hits:
Description: 数值逼近对于Runge函数f(x)= ,在[-1,1]上作等距节点插值,分别取n=4,n=8,n=12,插值的图像-Numerical approximation for the Runge function f (x) =, in [-1,1] on equidistant nodes for interpolation, respectively n = 4, n = 8, n = 12, the image interpolation
Platform: |
Size: 15360 |
Author: zn |
Hits:
Description: 两个求解微分方程组 的龙格库塔法程序两个程序可用-Solving the two differential equations Runge-Kutta method can be used two procedures procedures
Platform: |
Size: 1024 |
Author: df |
Hits:
Description: 利用四阶runge-kutta法,计算铅垂面内导弹弹道轨迹的一个例子。-Using fourth-order runge-kutta method, calculation of vertical-plane trajectory of the missile an example
Platform: |
Size: 1024 |
Author: 赌挖宝 |
Hits:
Description: runge现象的matlab仿真,用于数值分析-phenomenon of runge, simulated via matlab, for mathmatical analysis
Platform: |
Size: 6144 |
Author: serena |
Hits:
Description: 在matlab中四阶Runge-Kutta法求解常微分方程-Runge-Kutta
Platform: |
Size: 4096 |
Author: ll |
Hits:
Description: 龙格4阶matlab仿真 进行数据仿真运算看可以进行调用和修改-runge MATLAB m-file
Platform: |
Size: 1024 |
Author: jianglin |
Hits:
Description: 常微分方程的数值解法及仿真
一、 欧拉(Euler)公式 2
二、 龙格-库塔公式 2
1. 二阶龙格-库塔公式 2
2. 四阶龙格-库塔公式 2
三、 一阶常微分方程组的数值解法 2
四、 仿真算例 4
仿真1 应用欧拉法 4
仿真2 应用二阶龙格-库塔法 5
仿真3 应用四阶龙格-库塔法 6
附录 Matlab程序 7
1. 欧拉法程序 7
2. 二阶龙格-库塔法程序 8
3. 四阶龙格-库塔法程序 9
参考文献 10
-runge-kutta
Platform: |
Size: 217088 |
Author: winwind |
Hits:
Description: 经典Runge-Kutta法,计算积分的源代码,用matlab实现-Classical Runge-Kutta method to calculate the source code of points, using matlab implementation
Platform: |
Size: 26624 |
Author: 刘华杰 |
Hits:
Description: 龙格-库塔法(Runge-Kutta)是用于模拟常微分方程的解的重要的一类隐式或显式迭代法。-Runge- Kutta method (Runge-Kutta) is used to simulate the ordinary differential equations of an important class of implicit or explicit iterative method.
Platform: |
Size: 1024 |
Author: 张勇 |
Hits:
Description: MATLAB四阶龙格库塔法 求解微分方程数值解 源程序代码(MATLAB four Runge Kutta method is applied to solve the numerical solution source code of differential equations.)
Platform: |
Size: 1024 |
Author: 冷风醉1 |
Hits:
Description: 11.1 Euler方法 380
11.1.1 Euler公式的推导 380
11.1.2 Euler方法的改进 383
11.2 Runge-Kutta方法 385
11.2.1 二阶Runge-Kutta方法 385
11.2.2 三阶Runge-Kutta方法 388
11.2.3 四阶Runge-Kutta方法 390
11.2.4 隐式Runge-Kutta方法 391
11.3 线性多步法 392
11.3.1 Adams外推公式 392
11.3.2 Adams内插公式 394
11.3.3 Adams预测校正公式 395
11.4 微分方程组的数值解 397
11.4.1 Euler方法 397
11.4.2 经典四阶Runge-Kutta方法 398
11.4.3 高阶方程组的求解 399
11.5 刚性方程组的数值解 401
11.5.1 梯形公式 401
11.5.2 隐式Runge-Kutta方法 402
11.5.3 Adams隐式公式 403
11.6 边值问题的数值解 405
11.6.1 打靶法 405
11.6.2 差分法 409
11.7 MATLAB自带函数应用 411
11.7.1 ode系列函数 411
11.7.2 bvp系列函数 414
11.8 应用案例 416(numerical methods for ordinary differential equations)
Platform: |
Size: 16384 |
Author: XWLYF |
Hits: