Hot Search : Source embeded web remote control p2p game More...
Location : Home Search - secant
Search - secant - List
DL : 1
给定一个三次方程,用割线法求解,并研究各种算法的收敛阶数.-Given a cubic equation, the secant method and to study the convergence of various algorithms order.
Update : 2025-02-19 Size : 1kb Publisher : lidiandian

非线性方程求根的理论讲解,包括Newton s Method, The Secant Method, Brent s Method-Methods for Solving Nonlinear Equations :Newton s Method, The Secant Method, Brent s Method
Update : 2025-02-19 Size : 78kb Publisher : lichao

DL : 0
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f.-The secant iteration to find the zero of some non-linear function converges to zero if appropriate starting values are chosen. Although the convergence rate is not as good as the one of the Newton method, it may sometimes converge when Newton fails. The funtion should be defined as an inline function and two starting values are required to start the iteration. Please enter help secant from the Matlab prompt for usage information and examples.
Update : 2025-02-19 Size : 1kb Publisher : 王怀东

DL : 0
a m file for matlab the secant method-mathlab
Update : 2025-02-19 Size : 2kb Publisher : yipchiho

DL : 0
function [x, hist] = secant(x, f, tola, tolr) SECANT This a secant code with no line search. This code terminates on small relative-absolute errors function [X, HIST] = SECANT(X, F, TOLA, TOLR) Inputs: X = initial iterate F = function TOLA = absolute error tolerance TOLR = relative error tolerance Output: X = approximate result-function [x, hist] = secant(x, f, tola, tolr) SECANT This a secant code with no line search. This code terminates on small relative-absolute errors function [X, HIST] = SECANT(X, F, TOLA, TOLR) Inputs: X = initial iterate F = function TOLA = absolute error tolerance TOLR = relative error tolerance Output: X = approximate result
Update : 2025-02-19 Size : 1kb Publisher : devdvl

Secant method to calculate numerically your values. Numerical methods program,-Secant method to calculate numerically your values. Numerical methods program,
Update : 2025-02-19 Size : 1kb Publisher : EM O

DL : 1
Root finding using Secant method
Update : 2025-02-19 Size : 1kb Publisher : mohsen

secant method and Newton-Lagrange method
Update : 2025-02-19 Size : 15kb Publisher : ariadna0

DL : 0

Update : 2025-02-19 Size : 1kb Publisher : edward

DL : 0
Secant method. This code is for secant method that we study in Numerical Analysis sunject.
Update : 2025-02-19 Size : 1kb Publisher : mmuntaha

DL : 0
secant code for matlab
Update : 2025-02-19 Size : 1kb Publisher : jaypee

modify secant method with matlab
Update : 2025-02-19 Size : 1kb Publisher : A

最佳化搜尋法動畫繪圖程式,包含 Golden ratiao、Newton、Secant 等三種方法,是繁體中文的喔-Optimized search method in animation including Golden ratiao、Newton、Secant methods, interface is in traditional chinese
Update : 2025-02-19 Size : 14kb Publisher : Newman

source code for implementation of secant s method of numerical analysis methods in mathematics.
Update : 2025-02-19 Size : 1kb Publisher : skreamer

nonlinear secant method
Update : 2025-02-19 Size : 1kb Publisher : Kal

DL : 0
solution to nonlinear equations use secant method
Update : 2025-02-19 Size : 236kb Publisher : pa128.abs

DL : 0
Secant Theorem is maked by me
Update : 2025-02-19 Size : 1kb Publisher : taha

DL : 0
implements the secant method for solving an equation f(x) = 0.
Update : 2025-02-19 Size : 1kb Publisher : mohammed

SECANT METHOD****************************************************** * THIS PROGRAM FINDS THE ROOT OF AN ALGEBRAIC/TRANSCENDENTAl * * EQUATION BY SECANT -SECANT METHOD****************************************************** * THIS PROGRAM FINDS THE ROOT OF AN ALGEBRAIC/TRANSCENDENTAl * * EQUATION BY SECANT
Update : 2025-02-19 Size : 11kb Publisher : amin

Secant method to solve equation
Update : 2025-02-19 Size : 1kb Publisher : akaitako
« 12 3 4 5 6 7 8 9 10 ... 14 »
CodeBus is one of the largest source code repositories on the Internet!
Contact us :
1999-2046 CodeBus All Rights Reserved.