Description: 用小波神经网络来对时间序列进行预测,其中有四个m文件-wavelet neural network to forecast the time series, which document 4 m Platform: |
Size: 4096 |
Author:stefwing |
Hits:
Description: 在用混沌理论和神经网络进行短期负荷预测时,神经网络的输入的选择至关重要,该程序用matlabl实现了基于混沌时间序列的嵌入维数的选择-using chaos theory and neural networks for short-term load forecasts, the neural network is essential to choose an input, The procedure used matlabl achieved a chaotic time series based on the embedding dimension of choice Platform: |
Size: 1024 |
Author:sunyan |
Hits:
Description: 本程序时基于混沌理论和ELMAN神经网络的短期负荷预测,能取得很好的预测效果,直接使用该程序就能实现电力短期负荷预测,同样使用于其他类型的时间序列预测-the procedures based on chaos theory and neural networks ELMAN short-term load forecasts, can be achieved very good results forecast, the direct use of the procedure we will be able to realize short-term power load forecasting, the same used in other types of time series prediction Platform: |
Size: 1024 |
Author:sunyan |
Hits:
Description: 为了提高使用精度,研究了某型号MEMS陀螺仪的随机漂移模型。采用游程检验法分析了
该陀螺仪随机漂移数据的平稳性,并根据该漂移为均值非平稳、方差平稳的随机过程的结论,
采用梯度径向基(RBF)神经网络对漂移数据进行了建模。实验结果表明:相比经典RBF网络模
型而言,这种方法建立的模型能更好地描述MEMS陀螺仪的漂移特;相对于季节时间序列模型而
言,其补偿效果提高了大约15%。-In order to improve accuracy, to study a particular model of the MEMS gyroscope random drift model. Using run-length analysis of the test gyro random drift data stationarity, and in accordance with the drift for the average non-stationary, the variance of the random process a smooth conclusion, the use of gradient radial basis (RBF) neural network drift data to build mode. The experimental results show that: compared to the classical RBF network model, this method of establishing a model to better describe the MEMS gyroscope drift special compared with the seasonal time series model, the effect of their compensation increased by approximately 15. Platform: |
Size: 129024 |
Author:程正 |
Hits:
Description: 资源分配神经网络解决Mackey-Glass时间序列预测函数逼近问题-Neural network to solve the allocation of resources Mackey-Glass time series prediction function approximation problem Platform: |
Size: 1024 |
Author:吴强 |
Hits:
Description: 利用神经网络预测时间序列,以太阳黑子和实际的转子故障信号为例,matlab编程-Using neural network time series prediction to sunspots and the actual rotor fault signal as an example, matlab programming Platform: |
Size: 195584 |
Author:苏文胜 |
Hits:
Description: matlab格式源代码。功能:径向基神经网络算法源码和应用于时间序列模型建立和预测问题。-matlab source code format. Function: RBF neural network algorithm source code and applies to time-series model and prediction of the problem. Platform: |
Size: 5120 |
Author:magic |
Hits:
Description: matlab编写的基于混沌时间序列的神经网络预测,包括一步和多步预测算法。-matlab prepared chaotic time series based on the neural network to predict, including step and multi-step prediction algorithm. Platform: |
Size: 9216 |
Author:jcuaon |
Hits:
Description: MATLAB implementation of time series prediction Based on the VQTAM method described in the following papers:
G. A. Barreto & A. F. R. Araujo (2004)
"Identification and Control of Dynamical Systems Using the Self-Organizing Map"
IEEE Transactions on Neural Networks, vol. 15, no. 5. Platform: |
Size: 23552 |
Author:Carlos Wilson |
Hits:
Description: 用小波神经网络变换对时间序列信号进行预测,并做了测试,效果很好,请参考-Transform using wavelet neural network to predict the time series signal, and do a test with good results, please refer to Platform: |
Size: 4096 |
Author:hujunhua |
Hits:
Description: 为了选择神经网络的最好结构以及增强模型的推广能力,提出一种自适应支持向量回归神经网络(SVR—NN)。SVR—NN 用支持向量回归(SVR)方法获得网络的初始结构和权值, 白适应地生
成网络隐层结点,然后用基于退火过程的鲁棒学习算法更新网络结点疹教和权 主。 SVR—NN有很
好的收敛性和鲁棒性,能抑制由于数据异常和参数选择不当所导致的“过拟合,’现象。将SVR—NN
应用到时间序列预测上。结果表明,SVR.NN预测模型能精确地预测混沌时间序列,具有很好的
理论和应用价值。-Abstract:To select the‘best’structure of the neural networks and enhance the generalization ability of models.a support
vector regression neural networks fSVR-NN)was proposed.Firstly,support vector regression approach was applied to
determine initial structure and initial weights of SVR.NN SO that the number of hidden layer nodes can be constructed
adaptively based on support vectors.Furthermore,an annealing robust learning algorithm was further presented to fine
tune the hidden node parameters and weights of SVR一ⅣM The adaptive SVR.NN has faSt convergence speed and robust
capability.and it can also suppress the ‘orerfitting’phenomena when the train data ncludes outliers.The adaptive
SVR.NN was then applied to time series prediction.Experimental results show that the adaptive SVR.ⅣⅣ can accurately
predict chaotic time series,and it iS valuable in both theory and application aspects. Platform: |
Size: 316416 |
Author:11 |
Hits:
Description: 文章展示了一种新的方法用于功率系统中短期负载预测。提出的方案使用混沌时间序列分析基于确定性混沌去捕捉复杂的负载行为特征。确定性的混沌允许我们重构一个时间序列并决定输入的变量个数。这篇文章描述了混沌时间序列对日间功率系统峰值的分析。确定性混沌的非线性图形通过多层感知器的神经网络得到。提出的方案在一个例子中具体阐述。-This paper presents a new approach to short-term load forecasting in power systems. The proposed method makes use of chaos time series analysis that is based on deterministic chaos to capture characteristics of complicated load behavior. Deterministic chaos allows us to reconstruct a time series and determine the number of input variables. This paper describes chaos time series analysis of daily power system peak loads. The nonlinear
mapping of deterministic chaos is identified by the multilayer perceptron of an artificial neural network. The proposed approach is demonstrated in an example. Platform: |
Size: 382976 |
Author:will |
Hits:
Description: 针对神经网络的瓦斯预测模型存在的泛化性能差且存在易陷入局部最优的缺点,提出了
基于最小二乘支持向量机(LS-SVM)时间序列瓦斯预测方法.由于标准最小二乘支持向量机
(L孓SVM)要求样本误差分布服从高斯分布,且标准LS-SVM丧失鲁棒性与稀疏性等特点,提出
了基于加权LS-SVM的瓦斯时间序列预测的方法,从而提高了标准L孓SVM模型的鲁棒性.其
中时间序列的嵌入维数与延迟时间采用了微熵率最小原则进行选取,在此基础上给出了基于加
权L孓SVM实现多步时间序列预测的算法实现步骤.最后利用MATLAB 7.1对其进行仿真研
究,通过鹤壁十矿1个突出工作面的瓦斯涌出数据实例对模型进行了验证.结果表明,加权
SVM模型比标准的L§SVM明显提高了鲁棒性,可较好地实现时间序列数据的多步预测.-The neural network gas prediction model is poor in generalization performance and
easy in fafling into the local optimal value.In order to overcome these shortcomings,we pro—
pose the time series gas prediction method of least squares support vector machine(L§SVM).
However,in the LS-SVM case,the sparseness and robustness may lose,and the estimation of
the support values iS optimal only in the case of a Gaussian distribution of the error variables.
So,this paper proposes the weighted L孓SVM tO overcome these tWO drawbacks.Meanwhile,
the optimal embedding dimension and delay time of time series are obtained by the smallest dif—
ferential entropy method.On this basis,multi-step time series prediction algorithm steps are
given based on the weighted LS-SVM.Finally,the data of gas outburst in working face of Hebi
lOth mine iS adopted to validate this model.The results show that the predict effect of shortterm
the face gas emission is better using the weighted LS-SVM model than using Platform: |
Size: 490496 |
Author:wanggen |
Hits:
Description: 运用神经网络与时间序列分析对风电功率进行预测的一个matlab程序。-Using neural network and time series analysis forecast wind power Platform: |
Size: 41984 |
Author:年兴 |
Hits: