Welcome![Sign In][Sign Up]
Location:
Search - trainbp

Search list

[Other resourcetrainbp

Description: BP人工神经网络训练源码,采用三层网络结构,固定节点数目,可以设定学习速度和学习次数。
Platform: | Size: 29069 | Author: gabriel | Hits:

[matlab用MATLAB开发的BP算法源程序

Description: 基于神经网络工具箱函数trainbp和simuff实现的BP算法源程序,内附样本数据和测试数据。-based on neural network toolbox function and simuff trainbp BP algorithm to achieve the source, containing sample data and test data.
Platform: | Size: 555 | Author: 萧雪鱼 | Hits:

[AI-NN-PRbp339

Description: 基于神经网络工具箱函数trainbp和simuff实现的BP算法源程序,内附样本数据和测试数据。-based on neural network toolbox function and simuff trainbp BP algorithm to achieve the source, containing sample data and test data.
Platform: | Size: 1024 | Author: 萧雪鱼 | Hits:

[AI-NN-PRtrainbp

Description: BP人工神经网络训练源码,采用三层网络结构,固定节点数目,可以设定学习速度和学习次数。-BP artificial neural network training source, using the three-tier network architecture, a fixed number of nodes, you can set the number of learning speed and learning.
Platform: | Size: 28672 | Author: gabriel | Hits:

[AI-NN-PRbpm_train

Description: 人工神经网络系统的训练 TRAIN BP算法存在局部极小点,收敛速度慢等缺点,改进的BP算法。-Artificial neural network training algorithm TRAINBP local minimum points, such as the shortcomings of slow convergence, improved BP algorithm.
Platform: | Size: 2048 | Author: q | Hits:

[matlabSingularValueDecomposition

Description: 人脸识别过程中的奇异值分解算法代码,亲测可用,实现步骤为: feature = allFeature(1) //featurenumber=8,16,24,32,48,64,80 [pn,pnewn,t,num_train,num_test] = train_test(feature,num_train) //num_train=1~10 [net] = createBP(pn) //110,tansig,purelin,trainrp,1e-5,8000,0.005 [net,tr] = trainBP(net,pn,t) [result_test,result_train,count_test,count_train,Test_reg,Train_reg,Total_reg] = result(net,pnewn,pn,num_train,num_test) -Recognition process singular value decomposition algorithm code, pro-test can be used to achieve the steps of: feature = allFeature (1) //featurenumber = 8,16,24,32,48,64,80 [pn, pnewn, t , num_train, num_test] = train_test (feature, num_train) //num_train = 1 ~ 10 [net] = createBP (pn) // 110, tansig, purelin, trainrp, 1e-5, 8000,0.005 [net, tr ] = trainBP (net, pn, t) [result_test, result_train, count_test, count_train, Test_reg, Train_reg, Total_reg] = result (net, pnewn, pn, num_train, num_test)
Platform: | Size: 8075264 | Author: 陈伟 | Hits:

CodeBus www.codebus.net