Welcome![Sign In][Sign Up]
Location:
Search - two point crossover

Search list

[Consoletsp.cpp

Description: 用遗传算法(Genetic algorithm)解决Travel salesperson problem. Crossover类型:one-point和two-point. 选择类型:Tournament和RouletteWheel.
Platform: | Size: 2844 | Author: lightlid | Hits:

[AI-NN-PRGA

Description: matlab编写的遗传算法优化程序,采用随机配对交叉,多点交叉,两点交叉,编译对目标函数进行优化-matlab genetic algorithm to optimize the preparation procedures, using a random cross-matching, multi-point crossover, two cross-cutting, the compiler of the objective function to optimize
Platform: | Size: 1024 | Author: 夏雨泽 | Hits:

[OtherKnapsackProblem

Description: 基本遗传算法带最优保存思想的背包问题,其中,目标值那段代码使用的是惩罚函数法,选择是概率选择,交叉是双点随机交叉,变异是概率变异-The basic genetic algorithm with elitist thinking knapsack problem, which is a target that part of the code using penalty function method, choice is the probability of selection, crossover is a two-point random crossover and mutation is the probability of mutation
Platform: | Size: 2048 | Author: 田文杰 | Hits:

[matlabgenetic-algorithm

Description: 遗传算法是一种进化算法,应用广泛,此文件包含基本遗传算法,顺序选择遗传算法,适值函数标定的遗传算法,大变异遗传算法,自适应遗传算法,双切点交叉遗传算法,多变异位自适应遗传算法matlab源代码,供大家参考-Genetic algorithm is an evolutionary algorithm, widely used, this file contains the basic genetic algorithm, genetic algorithm selection order coincided with the genetic algorithm calibration function, a large variation of genetic algorithm, adaptive genetic algorithm, two-cut point crossover genetic algorithm, variable ectopic Adaptive genetic algorithm matlab source code for your reference
Platform: | Size: 6144 | Author: 熊杰 | Hits:

[OS programCrossing

Description: 基于matlab平台上实现的遗传算法交叉算子操作,实现的是对自然数编码的两点交叉。代码无错,可以直接运行。-Based on matlab platform to achieve crossover genetic algorithm operations, the realization of the two-point crossover natural number coding. Code is error-free, can be directly run.
Platform: | Size: 1024 | Author: Borney Liu | Hits:

[Otherlisan

Description: 绘制两离散曲线的交点,不同于拟合离散点的方法(plot the crossover point of two series of discrete points)
Platform: | Size: 1024 | Author: 空蒙大大 | Hits:

[matlabNSGA-III

Description: 测试可以跑,根据自己情况修改下函数即可. NSGA-III 首先定义一组参考点。然后随机生成含有 N 个(原文献说最好与参考点个数相同)个体的初始种群,其中 N 是种群大小。接下来,算法进行迭代直至终止条件满足。在第 t 代,算法在当前种群 Pt的基础上,通过随机选择,模拟两点交叉(Simulated Binary Crossover,SBX)和多项式变异 产生子代种群 Qt。Pt和 Qt的大小均为 N。因此,两个种群 Pt和 Qt合并会形成种群大小为 2N 的新的种群 Rt=Pt∪Qt。 为了从种群 Rt中选择最好的 N 个解进入下一代,首先利用基于Pareto支配的非支配排序将 Rt分为若干不同的非支配层(F1,F2等等)。然后,算法构建一个新的种群St,构建方法是从 F1开始,逐次将各非支配层的解加入到 St,直至 St的大小等于 N,或首次大于 N。假设最后可以接受的非支配层是 L层,那么在 L+ 1 层以及之后的那些解就被丢弃掉了,且 St\ FL中的解已经确定被选择作为 Pt+1中的解。Pt+1中余下的个体需要从 FL中选取,选择的依据是要使种群在目标空间中具有理想的多样性。(The test can run and modify the function according to its own situation. NSGA-III first defines a set of reference points. Then the initial population containing N individuals (preferably the same number of reference points as the original literature) was randomly generated, where N was the size of the population. Next, the algorithm is iterated until the termination condition is satisfied. On the basis of current population Pt, the algorithm simulates two-point crossover (SBX) and polynomial mutation to produce offspring population Qt by random selection.)
Platform: | Size: 14336 | Author: 朱朱521 | Hits:

CodeBus www.codebus.net