Welcome![Sign In][Sign Up]
Location:
Search - wavelet scaling function MATLAB

Search list

[Bookslm2

Description: 给出了一个线性调频信号的Gabor1变换;给出了一个信号的Gabor变换;coif2,coif3,coif4,coif5 正交小波的尺度函数和小波函数-Gives a linear frequency modulation signal Gabor1 transform gives a signal of the Gabor transform coif2, coif3, coif4, coif5 orthonormal wavelet scaling function and wavelet function
Platform: | Size: 3072 | Author: 李红 | Hits:

[Graph Drawingmultiwaveltfigure

Description: 可画任何多小波的两尺度尺度函数和小波向量图象-Can draw any more than the two-scale wavelet scaling function and wavelet vector images
Platform: | Size: 1024 | Author: 廖云 | Hits:

[Waveletperiodic_wavelet

Description: 小波变换,D4尺度函数和小波函数图形绘制-Wavelet transform, D4 scaling function and wavelet function Rendering
Platform: | Size: 1024 | Author: ranee | Hits:

[Waveletwavelet

Description: 小波变换,D4尺度函数和小波函数计算及绘制-Wavelet transform, D4 scaling function and wavelet function calculation and mapping
Platform: | Size: 1024 | Author: ranee | Hits:

[Special EffectsMATLAB-PROG

Description: 小波尺度函数,用于小波分析,数据采样,图象处理-Wavelet scaling function
Platform: | Size: 1024 | Author: 李军 | Hits:

[Linux-Unix1D_Gabor_transform

Description: 这个MATLAB软件包实现了小波在一维Gabior样转换的文件中所述: [1] K.N.乔杜里,M.,王凤琴,“建设希尔伯特变换的双 波基和Gabor变换,“对信号的IEEE交易 加工,第一卷。 57,没有。 9,3411-3425,2009年9月。 作者:K.N.乔杜里。 模块如下: --------------------------- 1。 demo.m 一个简单的例子演示软件的使用。 2。 autcorr.m 计算自相关函数的频率响应。 3。 filters.m 计算尺度和小波滤波器。 4。 projectionFilters.m 到近似计算的投影最小二乘过滤器 空间。 5。 analysis.m 计算复杂的小波子在不同的分辨率。 6。 synthesis.m 从低通逼近和重构原始信号 小波系数。 7。 displayResults.m 显示输入信号,真实,小波虚componenets 子带,在每一项决议和其modlus和相位,也是 重建信号和错误的。 8。 exception.m-This MATLAB package implements the Gabior-like wavelet transform in 1-dimension as described in the paper: [1] K.N. Chaudhury, M. Unser, "Construction of Hilbert Transform Pairs of Wavelet Bases and Gabor-Like Transforms," IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3411-3425, September 2009. Author: K.N. Chaudhury. The modules are as follows: --------------------------- 1. demo.m Demonstrates the usage of the software with a simple example. 2. autcorr.m Computes the frequency response of the autocorrelation function. 3. filters.m Computes the scaling and wavelet filters. 4. projectionFilters.m Computes the filters for the least-squares projection onto the approximation spaces. 5. analysis.m Computes the complex wavelet subbands at different resolutions. 6. synthesis.m Reconstructs the original signal from the lowpass approximation and the wavelet coefficients. 7. displayResults.m Disp
Platform: | Size: 11264 | Author: 崔花婷 | Hits:

[matlabDB2

Description: 利用级联算法在MATLAB中得到db2的尺度函数和小波函数-Db2 cascade algorithm using the scaling function and wavelet function in MATLAB
Platform: | Size: 1024 | Author: 毕晓辉 | Hits:

[Waveletmatlab小波变换程序

Description: 小波变换(wavelet transform,WT)是一种新的变换分析方法,它继承和发展了短时傅立叶变换局部化的思想,同时又克服了窗口大小不随频率变化等缺点,能够提供一个随频率改变的"时间-频率"窗口,是进行信号时频分析和处理的理想工具。它的主要特点是通过变换能够充分突出问题某些方面的特征,能对时间(空间)频率的局部化分析,通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。(Wavelet transform (WT) is a new transform analysis method. It inherits and develops the idea of localization of short-time Fourier transform and overcomes the shortcomings that window size does not vary with frequency. It can provide a frequency-dependent The Time-Frequency window is ideal for time-frequency analysis and processing of signals. Its main feature is that by transforming some features that can fully highlight some aspects of the problem, the localization of the time (space) frequency can be analyzed, and the signal (function) can be gradually and multi-scale refined by the scaling operation, finally reaching the high frequency Time subdivision, frequency subdivision at low frequencies, can automatically adapt to the requirements of time-frequency signal analysis, which can focus on any details of the signal to solve the difficulties of Fourier transform has become a major breakthrough in the scientific method since Fourier transform.)
Platform: | Size: 1024 | Author: 丁帅 | Hits:

CodeBus www.codebus.net