Description: function [U, center, result, w, obj_fcn] = fenlei (data) [data_n, in_n] = size (data) m = 2 Exponent for U max_iter = 100 Max. iteration min_impro = 1e-5 Min. improvement c = 3 [center, U, obj_fcn] = fcm (data, c) for i = 1: max_iter if F (U)> 0.98 break else w_new = eye (in_n, in_n) center1 = sum (center)/ca = center1 (1) ./center1 deta = center-center1 (ones (c, 1),:) w = sqrt (sum (deta. ^ 2)) .* a for j = 1: in_n w_new (j, j) = w (j) end data1 = data* w_new [center, U, obj_fcn] = fcm (data1, c) center = center./w (ones (c, 1),:) obj_fcn = obj_fcn/sum (w. ^ 2) end end display (i) result = zeros (1, data_n) U_ = max (U) for i = 1: data_n for j = 1: c if U (j, i) == U_ (i) result (i) = j continue end end end
- [gaMatlab] - Fuzzy C-means algorithm converges to loc
- [fcm] - Using fuzzy C means clustering on the co
File list (Check if you may need any files):
fenlei.m
ft(3).doc