Description: With a simple iteration method and Newton iterative method seeking exp (x)+10* x-2 = 0 approximation of the root, the error does not exceed 0.0005, take initial value of 0, a simple iterative method with the iterative process (2-exp (x))/10
To Search:
File list (Check if you may need any files):
简单迭代法\Debug\vc60.idb
..........\.....\vc60.pdb
..........\.....\简单迭代法求方程根.exe
..........\.....\简单迭代法求方程根.ilk
..........\.....\简单迭代法求方程根.obj
..........\.....\简单迭代法求方程根.pch
..........\.....\简单迭代法求方程根.pdb
..........\简单迭代法求方程根.cpp
..........\简单迭代法求方程根.dsp
..........\简单迭代法求方程根.dsw
..........\简单迭代法求方程根.ncb
..........\简单迭代法求方程根.opt
..........\简单迭代法求方程根.plg
牛顿迭代法\newton\Debug\vc60.idb
..........\......\.....\vc60.pdb
..........\......\.....\牛顿迭代法求根.exe
..........\......\.....\牛顿迭代法求根.ilk
..........\......\.....\牛顿迭代法求根.obj
..........\......\.....\牛顿迭代法求根.pch
..........\......\.....\牛顿迭代法求根.pdb
..........\......\牛顿迭代法求根.cpp
..........\......\牛顿迭代法求根.dsp
..........\......\牛顿迭代法求根.dsw
..........\......\牛顿迭代法求根.ncb
..........\......\牛顿迭代法求根.opt
..........\......\牛顿迭代法求根.plg
..........\......\Debug
简单迭代法\Debug
牛顿迭代法\newton
简单迭代法
牛顿迭代法