Description: Interpolation function approximation numerical integration of nonlinear differential equations numerical solution of linear equations to solve the direct method of solving linear equations of the iteration calculation of special functions, random number generator initial value problems for ordinary differential equations numerical solution of partial differential equations Statistics and analysis
To Search:
File list (Check if you may need any files):
《MATLAB语言常用算法程序集》一书的源程序\光盘使用说明.doc
........................................\光盘的算法程序索引.xls
........................................\第10章 非线性方程组求解\DiffParam1.m
........................................\........................\DiffParam2.m
........................................\........................\mulBFS.m
........................................\........................\mulConj.m
........................................\........................\mulDamp.m
........................................\........................\mulDFP.m
........................................\........................\mulDiscNewton.m
........................................\........................\mulDNewton.m
........................................\........................\mulFastDown.m
........................................\........................\mulGSND.m
........................................\........................\mulGXF1.m
........................................\........................\mulGXF2.m
........................................\........................\mulMix.m
........................................\........................\mulNewton.m
........................................\........................\mulNewtonSOR.m
........................................\........................\mulNewtonStev.m
........................................\........................\mulNumYT.m
........................................\........................\mulRank1.m
........................................\........................\mulSimNewton.m
........................................\........................\mulStablePoint.m
........................................\........................\mulVNewton.m
........................................\........................\SOR.m
........................................\...1章 解线性方程组的直接法\conjgrad.m
........................................\............................\Crout.m
........................................\............................\Doolittle.m
........................................\............................\followup.m
........................................\............................\GaussJordanXQ.m
........................................\............................\GaussXQAllMain.m
........................................\............................\GaussXQByOrder.m
........................................\............................\GaussXQLineMain.m
........................................\............................\InvAddSide.m
........................................\............................\qrxq.m
........................................\............................\SymPos1.m
........................................\............................\SymPos2.m
........................................\............................\SymPos3.m
........................................\............................\Yesf.m
........................................\...2章 解线性方程组的迭代法\BGS.m
........................................\............................\BJ.m
........................................\............................\BSOR.m
........................................\............................\conjgrad.m
........................................\............................\crs.m
........................................\............................\fastdown.m
........................................\............................\gauseidel.m
........................................\............................\grs.m
........................................\............................\jacobi.m
........................................\............................\JOR.m
........................................\............................\preconjgrad.m
........................................\............................\richason.m
........................................\............................\rs.m
........................................\............................\SOR.m
..................