Description: 1 beginning of the season S = {V0}, T = {remaining vertices}, T in the vertex corresponding distance value if there <V0,Vi> , D (V0, Vi) for the <V0,Vi> If the weight of the arc on the existence of <V0,Vi> , D (V0, Vi) for the α 2. Select one from the T distance is the smallest of its vertices W and not in S, add S 3. The distance between the vertices of T values ??may be modified: if the middle vertex added to W , the distance from the value V0 to Vi W than the path without shorter, then modify this value from the Repeat 2 and 3 until S contains all vertices, that is S = T so far
To Search:
File list (Check if you may need any files):
狄克斯特拉算法\Debug\graph0.obj
..............\.....\PshortPM.obj
..............\.....\SShortP.obj
..............\.....\vc60.idb
..............\.....\vc60.pdb
..............\.....\狄克斯特拉算法.pch
..............\.....\狄克斯特拉算法.pdb
..............\graph0.cpp
..............\graph0.h
..............\PshortP.h
..............\PshortPM.cpp
..............\SShortP.cpp
..............\狄克斯特拉算法.dsp
..............\狄克斯特拉算法.dsw
..............\狄克斯特拉算法.ncb
..............\狄克斯特拉算法.opt
..............\狄克斯特拉算法.plg
..............\Debug
狄克斯特拉算法