Description: 1, on the center of the observation data, 2, making a mean of 0, the data to whitening-> Z 3, select the number of components to be estimated m, setting the number of iterations p < -1 4, select an initial weight vector (random W, so that the Z dimension of the row vectors of numbers) 5, the use of iteration W (i, p) = mean (z (i, :).* (tanh ((temp) ' * z)))- (mean (1- (tanh ((temp)) ' * z). ^ 2)).* temp (i, 1) to learn W (This formula is used to approximate the negative entropy) 6 with symmetric orthogonal treatments W 7, normalized W (:, p) = W (:, p)/norm (W (:, p)) 8, if W does not converge, return to step 5 9 , so that p = p+1, if p less than or equal m, return to step 4 should be able to read the rest of the basic is based on negative entropy of the largest fast independent component analysis algorithm
To Search:
File list (Check if you may need any files):
FAST-ICA算法1.txt